957 resultados para RAT-LIVER MITOCHONDRIA
Resumo:
Le [6]-gingérol est un analogue structurel de la capsaïcine, une molécule agoniste au récepteurs TRPV1 et ayant des propriétés thérapeutiques connues dans le traitement de la douleur. Deux objectifs principaux ont été poursuivis lors de la réalisation de ce projet de recherche. D’abord, établir une meilleure caractérisation du métabolisme du [6]-gingérol chez le rat. Pour ce faire, une méthode sensible et spécifique pour la quantification du [6]-gingérol et ses métabolites par HPLC-ESI/MS/MS a été développée. Une étude de stabilité métabolique in vitro utilisant des microsomes hépatiques de rats a ensuite été réalisée. Les résultats démontrent une dégradation lente avec un temps de demi-vie de 163 minutes et une clairance intrinsèque relativement basse de 0.0043 mL/min. D’autres analyses ont ensuite été performées pour caractériser les métabolites in vitro et in vivo. Trois principaux métabolites de phase I et quatre métabolites de phase II ont été identifiés par HPLC-MS/MS et HPLC-MSD TOF. Les résultats suggèrent que le principal métabolite excrété dans l’urine est un glucuronide du [6]-gingérol hydroxylé. Le second objectif de ce projet était de déterminer l’effet central du [6]-gingérol sur la douleur neuropathique lorsqu’injecté par voie intrathécale. La distribution de la molécule a d’abord été évaluée suite à une administration intra-péritonéale de 40 mg/kg de [6]-gingérol et les ratios des concentrations cerveau-plasma et moelle épinière-plasma (0.73 et 1.7, respectivement) suggèrent que le [6]-gingérol se distribue efficacement au niveau du système nerveux central. Une injection intrathécale de 10 μg de [6]-gingérol à été performée chez les rats suite à l’induction de douleur par la pose de ligatures au niveau du nerf sciatique. Les résultats suggèrent une réduction significative de l’allodynie mécanique et de l’hyperalgésie thermique à 30 min, 2 h et 4 h suivant l’injection (p < 0.05, p < 0.01 et p < 0.001). Le [6]-gingérol se distribue donc adéquatement au niveau du système nerveux central des rats, permettant une action au niveau des récepteurs TRPV1. Ainsi, le [6]-gingérol pourrait soulager la douleur neuropathique en agissant centralement au niveau de la moelle épinière.
Resumo:
The levels and kinetic properties of arginase of the liver of s vertebrates : the fish otifg trhinea e)n, ztyhmee b ias thi(gPhteerro ipnu aslls tph.e), 3t hmeasmqumirarles lin(F cuonmampabruilsuosnp teon tnhaantt oi)f tahned p tohiek iglootahter(Cmaspra s(pC.)atalarec sattulad)i,edth. eT fhreo ga c(tRivaintya greater than that of the frog. The activity ; its activity in the fish is far in the bat and highest in the goat. in the bat is the same as in other mammals. The Km of the enzyme is lowest partially purified enzyme of vertebrates. significant difference in the inhibitory effect of glyoxylic acid on the partially purified enzyme of vertebrates.
Resumo:
The molecular mechanisms underlying the initiation and control of the release of cytochrome c during mitochondrion-dependent apoptosis are thought to involve the phosphorylation of mitochondrial Bcl-2 and Bcl-x(L). Although the c-Jun N-terminal kinase (JNK) has been proposed to mediate the phosphorylation of Bcl-2/Bcl-x(L) the mechanisms linking the modification of these proteins and the release of cytochrome c remain to be elucidated. This study was aimed at establishing interdependency between JNK signalling and mitochondrial apoptosis. Using an experimental model consisting of isolated, bioenergetically competent rat brain mitochondria, these studies show that (i) JNK catalysed the phosphorylation of Bcl-2 and Bcl-x(L) as well as other mitochondrial proteins, as shown by two-dimensional isoelectric focusing/SDS/PAGE; (ii) JNK-induced cytochrome c release, in a process independent of the permeability transition of the inner mitochondrial membrane (imPT) and insensitive to cyclosporin A; (iii) JNK mediated a partial collapse of the mitochondrial inner-membrane potential (Deltapsim) in an imPT- and cyclosporin A-independent manner; and (iv) JNK was unable to induce imPT/swelling and did not act as a co-inducer, but as an inhibitor of Ca-induced imPT. The results are discussed with regard to the functional link between the Deltapsim and factors influencing the permeability transition of the inner and outer mitochondrial membranes. Taken together, JNK-dependent phosphorylation of mitochondrial proteins including, but not limited to, Bcl-2/Bcl-x(L) may represent a potential of the modulation of mitochondrial function during apoptosis.
Resumo:
Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)
Resumo:
Background: Photodynamic therapy is mainly used for treatment of malignant lesions, and is based on selective location of a photosensitizer in the tumor tissue, followed by light at wavelengths matching the photosensitizer absorption spectrum. In molecular oxygen presence, reactive oxygen species are generated, inducing cells to die. One of the limitations of photodynamic therapy is the variability of photosensitizer concentration observed in systemically photosensitized tissues, mainly due to differences of the tissue architecture, cell lines, and pharmacokinetics. This study aim was to demonstrate the spatial distribution of a hematoporphyrin derivative, Photogem(R), in the healthy liver tissue of Wistar rats via fluorescence spectroscopy, and to understand its implications on photodynamic response. Methods: Fifteen male Wistar rats were intravenously photosensitized with 1.5 mg/kg body weight of Photogem(R). Laser-induced fluorescence spectroscopy at 532nm-excitation was performed on ex vivo liver slices. The influence of photosensitizer surface distribution detected by fluorescence and the induced depth of necrosis were investigated in five animals. Results: Photosensitizer distribution on rat liver showed to be greatly non-homogeneous. This may affect photodynamic therapy response as shown in the results of depth of necrosis. Conclusions: As a consequence of these results, this study suggests that photosensitizer surface spatial distribution should be taken into account in photodynamic therapy dosimetry, as this will help to better predict clinical results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aim: The aim of this work was to investigate the hypothesis that catechol and 3MC inhibit FADH2-linked basal respiration in mitochondria isolated from rat liver and brain homogenates. Moreover, catechol ability to induce DNA damage in rat brain cells through the comet assay (alkaline single-cell gel electrophoresis assay) was also observed. Methods: Two different catechols were evaluated: pirocatechol (derived from benzene) and 3-methylcatechol (derived from toluene); rat liver and brain homogenates were incubated with 1mM catechol at pH 7.4 for up to 30 minutes. After that, mitochondrial fractions were isolated by differential centrifugation. Basal oxygen uptake was measured using a Clark-type electrode after the addition of 10 mM sodium succinate for a period of 12 minutes. In additional experiments, rat brain cells were treated with 1, 5 and 10mM pirocatechol for up to 20 minutes at 37º C, and submitted to electrophoresis. Results: Catechols (pirocatechol and 3methylcatechol) induced a time-dependent partial inhibition of FADH2-linked basal mitochondrial respiration. Indeed, pirocatechol was able to produce a dosedependent DNA oxidative damage in rat brain cells by 2 and 4 injury levels. These results suggest that reactive oxygen species generated by the oxidation of catechols, induced an impairment on mitochondrial respiration and a DNA damage, which might be related to their citotoxicity. Conclusion: Catechols produced an inhibition of basal respiration associated to FADH2 in isolated liver and brain mitochondria; 3-methylcatechol, at the same concentration, produced similar toxicity in the mitochondrial model. Indeed, pirocatechol induced a DNA damage in rat brain cells, mainly observed in comets formation and consequent DNA degradation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influences of fasting on DEN-initiation and of intermittent fasting (IF) on the rat liver chemical carcinogenesis process were evaluated in a 52-week long assay. Three groups of adult male Wistar rats were used: Groups I to 3 were treated with a single i.p. injection of 200 mg/kg of diethylnitrosamine (DEN). Group 2 was submitted to 48 h fasting prior to DEN treatment. After the 4th week, Group 3 was submitted to IF, established as 48 h weekly fasting during 48 weeks, while Groups I and 2 were fed ad libitum until the 52nd week. All animals were submitted to 70% partial hepatectomy and sacrificed at the 3rd and 52nd weeks, respectively. Fasting prior to DEN-initiation did not influence the development of altered foci of hepatocytes (AFHs) and of hepatic nodules (Group 2 vs. Group G1). IF inhibited the development of preneoplastic lesions, since this dietary regimen decreased the number and the size of glutathione S-transferase (GST-P) positive foci and the number and size of liver nodules (Group G3 vs. Group G1), the inhibitory effect of IF was also reflected in the development of clear and basophilic cell foci. These results indicate that long-term IF regimen exerts an anti-promoting effect on rat hepatocarcinogenesis induced by DEN. (C) 2002 Wiley-Liss, Inc.
Resumo:
The modifying potential of crude extracts of the mushroom Agaricus blazei Murrill (Himematsutake) on the development and growth of glutathione S-transferase placental form (GST-P)-positive liver foci (liver preneoplastic lesion) was investigated in adult male Wistar rats. Six groups of animals were used. Groups 2 to 5 were given a single i.p. injection of 200 mg/kg b.w. of diethylnitrosamine (DEN) and groups 1 and 6 were treated with saline at the beginning of the experiment. After 2 weeks, animals of groups 3 to 6 were orally treated with three dose levels of aqueous extracts of the mushroom A. blazei (1.2, 5.6, 11.5, and 11.5 mg/ml of dry weight of solids) for 6 weeks. All animals were subjected to two-thirds partial hepatectomy at week 3 and sacrificed at week 8. Two hours before sacrifice, ten animals of each group were administered a single i.p injection of 100 mg/kg of bromodeoxyuridine (BrdU). Apoptotic bodies and BrdU-positive hepatocyte nuclei were quantified in liver sections stained for hematoxylin and eosin (H&E) (eosinophilic foci) and simultaneously stained for GST-P expression (GST-P-positive foci), respectively. The 6-week treatment with A. blazei did not alter the development (number and size) of GST-P-positive foci and did not affect the growth kinetics of liver normal parenchyma or foci in DEN-initiated animals. Our results indicate that the treatment with aqueous extracts of the mushroom A. blazei during the post-initiation stage of rat liver carcinogenesis does not exert any protective effect against the development of GST-P-positive foci induced by DEN. (Cancer Sci 2003; 94: 188-192).
Resumo:
Os autores estudaram 32 doentes picados por serpentes venenosas, sendo 16 picados por Bothrops spp. e 16 por Crotalus durissus terrificus. Trinta doentes eram do sexo masculino e dois do feminino com idades variando entre 8 e 63 anos (méda 33±15). A prova da retenção da bromosulfaleína apresentou-se aumentada na maioria dos doentes picados por serpentes Crotalus durissus terrificus. Houve correlação positiva entre a retenção da bromosulfaleína e os níveis séricos de alanina aminotransferase e entre alanina e aspartato aminotransferase apenas nos doentes do grupo Crotalus. Um dos doentes evoluiu para o óbito e apresentou no exame anatomopatológico do fígado degeneração hidrópica e lesões mitocondriais. Os autores concluem que as alterações hepáticas são causadas por pelo menos dois mecanismos a saber: lesão mitocondrial por efeito do veneno crotálico; efeito das citoquinas, especialmente a interleucina-6.
Resumo:
Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Indigotine Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by α-ketoglutarate or succinate. this inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
The cytochrome P450 (P450) monooxygenase system plays a major role in metabolizing a wide variety of xenobiotic as well as endogenous compounds. In performing this function, it serves to protect the body from foreign substances. However, in a number of cases, P450 activates procarcinogens to cause harm. In most animals, the highest level of activity is found in the liver. Virtually all tissues demonstrate P450 activity, though, and the role of the P450 monooxygenase system in these other organs is not well understood. In this project I have studied the P450 system in rat brain; purifying NADPH-cytochrome P450 reductase (reductase) from that tissue. In addition, I have examined the distribution and regulation of expression of reductase and P450 in various anatomical regions of the rat brain.^ NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by SDS-PAGE and Western blot techniques. Kinetic studies utilizing cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P4501A1 as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. These results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.^ Since the brain is not a homogeneous organ, dependent upon the well orchestrated interaction of numerous parts, pathology in one nucleus may have a large impact upon its overall function. Hence, the anatomical distribution of the P450 monooxygenase system in brain is important in elucidating its function in that organ. Related to this is the regulation of P450 expression in brain. In order to study these issues female rats--both ovariectomized and not--were treated with a number of xenobiotic compounds and sex steroids. The brains from these animals were dissected into 8 discrete regions and the presence and relative level of message for P4502D and reductase determined using polymerase chain reaction. Results of this study indicate the presence of mRNA for reductase and P4502D isoforms throughout the rat brain. In addition, quantitative PCR has allowed the determination of factors affecting the expression of message for these enzymes. ^