993 resultados para Quantitative ultrasound
Resumo:
This research has brought new scientific insight into the characteristics of airborne engineered nanoparticles, which is essential when considering their effects on human health. The key findings of the work were a harmonised and traceable protocol for the size characterisation of engineered nanoparticles, and quantification of their emissions and dynamics in workplaces. The novelty of this project is in coupling a comprehensive experimental measurement approach with innovative and effective data interpretation. Also, for the first time, the existence of a general trend in the emission of nanoparticles from a nanotechnology process was investigated.
Resumo:
The aim of this study was to develop a new method for quantifying intersegmental motion of the spine in an instrumented motion segment L4–L5 model using ultrasound image post-processing combined with an electromagnetic device. A prospective test–retest design was employed, combined with an evaluation of stability and within- and between-day intra-tester reliability during forward bending by 15 healthy male patients. The accuracy of the measurement system using the model was calculated to be ± 0.9° (standard deviation = 0.43) over a 40° range and ± 0.4 cm (standard deviation = 0.28) over 1.5 cm. The mean composite range of forward bending was 15.5 ± 2.04° during a single trial (standard error of the mean = 0.54, coefficient of variation = 4.18). Reliability (intra-class correlation coefficient = 2.1) was found to be excellent for both within-day measures (0.995–0.999) and between-day measures (0.996–0.999). Further work is necessary to explore the use of this approach in the evaluation of biomechanics, clinical assessments and interventions.
Resumo:
Objective To analyze the ability to discriminate between healthy individuals and individuals with chronic nonspecific low back pain (CNLBP) by measuring the relation between patient-reported outcomes and objective clinical outcome measures of the erector spinae (ES) muscles using an ultrasound during maximal isometric lumbar extension. Design Cross-sectional study with screening and diagnostic tests with no blinded comparison. Setting University laboratory. Participants Healthy individuals (n=33) and individuals with CNLBP (n=33). Interventions Each subject performed an isometric lumbar extension. With the variables measured, a discriminate analysis was performed using a value ≥6 in the Roland and Morris disability questionnaire (RMDQ) as the grouping variable. Then, a logistic regression with the functional and architectural variables was performed. A new index was obtained from each subject value input in the discriminate multivariate analysis. Main Outcome Measures Morphologic muscle variables of the ES muscle were measured through ultrasound images. The reliability of the measures was calculated through intraclass correlation coefficients (ICCs). The relation between patient-reported outcomes and objective clinical outcome measures was analyzed using a discriminate function from standardized values of the variables and an analysis of the reliability of the ultrasound measurement. Results The reliability tests show an ICC value >.95 for morphologic and functional variables. The independent variables included in the analysis explained 42% (P=.003) of the dependent variable variance. Conclusions The relation between objective variables (electromyography, thickness, pennation angle) and a subjective variable (RMDQ ≥6) and the capacity of this relation to identify CNLBP within a group of healthy subjects is moderate. These results should be considered by clinicians when treating this type of patient in clinical practice.
Resumo:
Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.
Resumo:
Qualitative aspects of verbal fluency may be more useful in discerning the precise cause of any quantitative deficits in phonetic or category fluency, especially in the case of mild cognitive impairment (MCI), a possible intermediate stage between normal performance and Alzheimer's disease (AD). The aim of this study was to use both quantitative and qualitative (switches and clusters) methods to compare the phonetic and category verbal fluency performance of elderly adults with no cognitive impairment (n = 51), significant memory impairment (n = 16), and AD (n = 16). As expected, the AD group displayed impairments in all quantitative and qualitative measures of the two fluency tasks relative to their age- and education-matched peers. By contrast, the amnestic MCI group produced fewer animal names on the semantic fluency task than controls and showed normal performance on the phonetic fluency task. The MCI group's inferior category fluency performance was associated with a deficit in their category-switching rate rather than word cluster size. Overall, the results indicate that a semantic measure such as category fluency when used in conjunction with a test of episodic memory may increase the sensitivity for detecting preclinical AD. Future research using external cues and other measures of set shifting capacity may assist in clarifying the origin of the amnestic MCI-specific category-switching deficiency. Copyright
Resumo:
Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.
Resumo:
Hand, foot and mouth disease (HFMD) is a contagious viral disease that frequently affects infants and children and present with blisters and flu-like symptoms. This disease is caused by a group of enteroviruses such as enterovirus 71 (EV71) and coxsackievirus A16 (CA16). However, unlike other HFMD causing enteroviruses, EV71 have also been shown to be associated with more severe clinical manifestation such as aseptic meningitis, brainstem and cerebellar encephalitis which may lead to cardiopulmonary failure and death. Clinically, HFMD caused by EV71 is indistinguishable from other HFMD causing enteroviruses such as CA16. Molecular diagnosis methods such as the use of real-time PCR has been used commonly for the identification of EV71. In this study, two platforms namely the real-time PCR and the droplet digital PCR were compared for the detection quantitation of known EV71 viral copy number. The results reveal accurate and consistent results between the two platforms. In summary, the droplet digital PCR was demonstrated to be a promising technology for the identification and quantitation of EV71 viral copy number.
Resumo:
Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46 ± 0.04 dB m −1 Gy −1, being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024 ± 0.003 dB MHz −1 Gy −1; the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.
Resumo:
A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.
Resumo:
Recent advances in optical and fluorescent protein technology have rapidly raised expectations in cell biology, allowing quantitative insights into dynamic intracellular processes like never before. However, quantitative live-cell imaging comes with many challenges including how best to translate dynamic microscopy data into numerical outputs that can be used to make meaningful comparisons rather than relying on representative data sets. Here, we use analysis of focal adhesion turnover dynamics as a straightforward specific example on how to image, measure, and analyze intracellular protein dynamics, but we believe this outlines a thought process and can provide guidance on how to understand dynamic microcopy data of other intracellular structures.
Resumo:
Introduction and Aims Wastewater analysis provides a non-intrusive way of measuring drug use within a population. We used this approach to determine daily use of conventional illicit drugs [cannabis, cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA)] and emerging illicit psychostimulants (benzylpiperazine, mephedrone and methylone) in two consecutive years (2010 and 2011) at an annual music festival. Design and Methods Daily composite wastewater samples, representative of the festival, were collected from the on-site wastewater treatment plant and analysed for drug metabolites. Data over 2 years were compared using Wilcoxon matched-pair test. Data from 2010 festival were compared with data collected at the same time from a nearby urban community using equivalent methods. Results Conventional illicit drugs were detected in all samples whereas emerging illicit psychostimulants were found only on specific days. The estimated per capita consumption of MDMA, cocaine and cannabis was similar between the two festival years. Statistically significant (P < 0.05; Z = −2.0–2.2) decreases were observed in use of methamphetamine and one emerging illicit psychostimulant (benzyl piperazine). Only consumption of MDMA was elevated at the festival compared with the nearby urban community. Discussion and Conclusions Rates of substance use at this festival remained relatively consistent over two monitoring years. Compared with the urban community, drug use among festival goers was only elevated for MDMA, confirming its popularity in music settings. Our study demonstrated that wastewater analysis can objectively capture changes in substance use at a music setting without raising major ethical issues. It would potentially allow effective assessments of drug prevention strategies in such settings in the future.
Resumo:
Measurements were made of the intake of a WHO/UNICEF glucose-based and a rice cereal-based oral rehydration solution (ORS) by children with diarrhoea. Twenty children who presented to the Children's Outpatient Department at Port Moresby General Hospital with acute diarrhoea and mild dehydration were randomly assigned to an ORS and measurements were taken over the following 3 hours. For data analysis, the patients were paired by weight. Testing the means of the paired samples by t test showed that there was no significant difference between the amount of rice ORS and the amount of glucose ORS taken over 3 hours. The discovery of oral rehydration solution (ORS) for the treatment of diarrheal disease has been heralded as the most important medical discovery of the century. Cereal-based ORS is able to decrease stool output and the duration of diarrheal illness more than the standard glucose-based ORS, through the increased absorption provided by oligosaccharides without the imposition of a greater osmotic penalty. Moreover, the peptides in cereals enhance amino acid and water absorption, while providing nutritional benefits. UNICEF's glucose-based ORS is becoming more widely used in Papua New Guinea (PNG). 20 children aged 6-37 months (mean age, 15 months) who presented to the Children's Outpatient Department at Port Moresby General Hospital during September-October 1993 with acute diarrhea and mild dehydration were randomly assigned to receive either a rice-based ORS or standard glucose ORS, and measurements were taken over the following 3 hours. The patients were paired by weight for analysis. No statistically significant difference was found between the amount of rice ORS and the amount of glucose ORS taken over 3 hours.
Resumo:
The authors report an in vivo human examination of carotid atheroma by using the inversion-recovery ON resonance (IRON) sequence, which is able to produce positive contrast after the infusion of an ultrasmall super paramagnetic iron oxide (USPIO) contrast medium. This technique provides a method of potentially identifying inflammatory burden within carotid atheroma. This may be particularly useful in patients who currently do not meet criteria for intervention (ie, moderate symptomatic stenosis or <70% asymptomatic stenosis) to further risk-stratify this important patient cohort. A 63-year-old man was imaged at 1.5 T before and 36 hours after USPIO infusion by using the IRON sequence. Regions of interest showing profound signal loss at T2*-weighted imaging corresponded well with regions of positive contrast at IRON imaging after the administration of USPIO. These regions also showed a profound decrease in T2* measurements after USPIO infusion, whereas surrounding tissue did not. It has been shown that such strong signal loss on T2*-weighted images after USPIO infusion is indicative of USPIO uptake.
Resumo:
Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of ten acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both ‘primary’ (internal sample interface) and ‘secondary’ (external sample interface) echoes. A transit time spectrum (TTS) was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7±3.7% of the simulated data was within ±1 standard deviation (STD) of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R2) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Further, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy (PE-UTTS) include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.
Resumo:
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R2=99.9% and R2=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.