989 resultados para Quantification methods
Resumo:
L’étude du cerveau humain est un domaine en plein essor et les techniques non-invasives de l’étudier sont très prometteuses. Afin de l’étudier de manière non-invasive, notre laboratoire utilise principalement l’imagerie par résonance magnétique fonctionnelle (IRMf) et l’imagerie optique diffuse (IOD) continue pour mesurer et localiser l’activité cérébrale induite par une tâche visuelle, cognitive ou motrice. Le signal de ces deux techniques repose, entre autres, sur les concentrations d’hémoglobine cérébrale à cause du couplage qui existe entre l’activité neuronale et le flux sanguin local dans le cerveau. Pour être en mesure de comparer les deux signaux (et éventuellement calibrer le signal d’IRMf par l’IOD), où chaque signal est relatif à son propre niveau de base physiologique inconnu, une nouvelle technique ayant la capacité de mesurer le niveau de base physiologique est nécessaire. Cette nouvelle technique est l’IOD résolue temporellement qui permet d’estimer les concentrations d’hémoglobine cérébrale. Ce nouveau système permet donc de quantifier le niveau de base physiologique en termes de concentrations d’hémoglobine cérébrale absolue. L’objectif général de ma maîtrise était de développer un tel système afin de l’utiliser dans une large étude portant sur la condition cardiovasculaire, le vieillissement, la neuroimagerie ainsi que les performances cognitives. Il a fallu tout d’abord construire le système, le caractériser puis valider les résultats avant de pouvoir l’utiliser sur les sujets de recherche. La validation s’est premièrement réalisée sur des fantômes homogènes ainsi qu’hétérogènes (deux couches) qui ont été développés. La validation des concentrations d’hémoglobine cérébrale a été réalisée via une tâche cognitive et appuyée par les tests sanguins des sujets de recherche. Finalement, on présente les résultats obtenus dans une large étude employant le système d’IOD résolue temporellement en se concentrant sur les différences reliées au vieillissement.
Resumo:
L’entérotoxine B staphylococcique (SEB) est une toxine entérique hautement résistante à la chaleur et est responsable de plus de 50 % des cas d’intoxication d’origine alimentaire par une entérotoxine. L’objectif principal de ce projet de maîtrise est de développer et valider une méthode basée sur des nouvelles stratégies analytiques permettant la détection et la quantification de SEB dans les matrices alimentaires. Une carte de peptides tryptiques a été produite et 3 peptides tryptiques spécifiques ont été sélectionnés pour servir de peptides témoins à partir des 9 fragments protéolytiques identifiés (couverture de 35 % de la séquence). L’anhydride acétique et la forme deutérée furent utilisés afin de synthétiser des peptides standards marqués avec un isotope léger et lourd. La combinaison de mélanges des deux isotopes à des concentrations molaires différentes fut utilisée afin d’établir la linéarité et les résultats ont démontré que les mesures faites par dilution isotopique combinée au CL-SM/SM respectaient les critères généralement reconnus d’épreuves biologiques avec des valeurs de pente près de 1, des valeurs de R2 supérieure à 0,98 et des coefficients de variation (CV%) inférieurs à 8 %. La précision et l’exactitude de la méthode ont été évaluées à l’aide d’échantillons d’homogénat de viande de poulet dans lesquels SEB a été introduite. SEB a été enrichie à 0,2, 1 et 2 pmol/g. Les résultats analytiques révèlent que la méthode procure une plage d’exactitude de 84,9 à 91,1 %. Dans l’ensemble, les résultats présentés dans ce mémoire démontrent que les méthodes protéomiques peuvent être utilisées efficacement pour détecter et quantifier SEB dans les matrices alimentaires. Mots clés : spectrométrie de masse; marquage isotopique; protéomique quantitative; entérotoxines
Resumo:
Dans un premier temps, nous avons modélisé la structure d’une famille d’ARN avec une grammaire de graphes afin d’identifier les séquences qui en font partie. Plusieurs autres méthodes de modélisation ont été développées, telles que des grammaires stochastiques hors-contexte, des modèles de covariance, des profils de structures secondaires et des réseaux de contraintes. Ces méthodes de modélisation se basent sur la structure secondaire classique comparativement à nos grammaires de graphes qui se basent sur les motifs cycliques de nucléotides. Pour exemplifier notre modèle, nous avons utilisé la boucle E du ribosome qui contient le motif Sarcin-Ricin qui a été largement étudié depuis sa découverte par cristallographie aux rayons X au début des années 90. Nous avons construit une grammaire de graphes pour la structure du motif Sarcin-Ricin et avons dérivé toutes les séquences qui peuvent s’y replier. La pertinence biologique de ces séquences a été confirmée par une comparaison des séquences d’un alignement de plus de 800 séquences ribosomiques bactériennes. Cette comparaison a soulevée des alignements alternatifs pour quelques unes des séquences que nous avons supportés par des prédictions de structures secondaires et tertiaires. Les motifs cycliques de nucléotides ont été observés par les membres de notre laboratoire dans l'ARN dont la structure tertiaire a été résolue expérimentalement. Une étude des séquences et des structures tertiaires de chaque cycle composant la structure du Sarcin-Ricin a révélé que l'espace des séquences dépend grandement des interactions entre tous les nucléotides à proximité dans l’espace tridimensionnel, c’est-à-dire pas uniquement entre deux paires de bases adjacentes. Le nombre de séquences générées par la grammaire de graphes est plus petit que ceux des méthodes basées sur la structure secondaire classique. Cela suggère l’importance du contexte pour la relation entre la séquence et la structure, d’où l’utilisation d’une grammaire de graphes contextuelle plus expressive que les grammaires hors-contexte. Les grammaires de graphes que nous avons développées ne tiennent compte que de la structure tertiaire et négligent les interactions de groupes chimiques spécifiques avec des éléments extra-moléculaires, comme d’autres macromolécules ou ligands. Dans un deuxième temps et pour tenir compte de ces interactions, nous avons développé un modèle qui tient compte de la position des groupes chimiques à la surface des structures tertiaires. L’hypothèse étant que les groupes chimiques à des positions conservées dans des séquences prédéterminées actives, qui sont déplacés dans des séquences inactives pour une fonction précise, ont de plus grandes chances d’être impliqués dans des interactions avec des facteurs. En poursuivant avec l’exemple de la boucle E, nous avons cherché les groupes de cette boucle qui pourraient être impliqués dans des interactions avec des facteurs d'élongation. Une fois les groupes identifiés, on peut prédire par modélisation tridimensionnelle les séquences qui positionnent correctement ces groupes dans leurs structures tertiaires. Il existe quelques modèles pour adresser ce problème, telles que des descripteurs de molécules, des matrices d’adjacences de nucléotides et ceux basé sur la thermodynamique. Cependant, tous ces modèles utilisent une représentation trop simplifiée de la structure d’ARN, ce qui limite leur applicabilité. Nous avons appliqué notre modèle sur les structures tertiaires d’un ensemble de variants d’une séquence d’une instance du Sarcin-Ricin d’un ribosome bactérien. L’équipe de Wool à l’université de Chicago a déjà étudié cette instance expérimentalement en testant la viabilité de 12 variants. Ils ont déterminé 4 variants viables et 8 létaux. Nous avons utilisé cet ensemble de 12 séquences pour l’entraînement de notre modèle et nous avons déterminé un ensemble de propriétés essentielles à leur fonction biologique. Pour chaque variant de l’ensemble d’entraînement nous avons construit des modèles de structures tertiaires. Nous avons ensuite mesuré les charges partielles des atomes exposés sur la surface et encodé cette information dans des vecteurs. Nous avons utilisé l’analyse des composantes principales pour transformer les vecteurs en un ensemble de variables non corrélées, qu’on appelle les composantes principales. En utilisant la distance Euclidienne pondérée et l’algorithme du plus proche voisin, nous avons appliqué la technique du « Leave-One-Out Cross-Validation » pour choisir les meilleurs paramètres pour prédire l’activité d’une nouvelle séquence en la faisant correspondre à ces composantes principales. Finalement, nous avons confirmé le pouvoir prédictif du modèle à l’aide d’un nouvel ensemble de 8 variants dont la viabilité à été vérifiée expérimentalement dans notre laboratoire. En conclusion, les grammaires de graphes permettent de modéliser la relation entre la séquence et la structure d’un élément structural d’ARN, comme la boucle E contenant le motif Sarcin-Ricin du ribosome. Les applications vont de la correction à l’aide à l'alignement de séquences jusqu’au design de séquences ayant une structure prédéterminée. Nous avons également développé un modèle pour tenir compte des interactions spécifiques liées à une fonction biologique donnée, soit avec des facteurs environnants. Notre modèle est basé sur la conservation de l'exposition des groupes chimiques qui sont impliqués dans ces interactions. Ce modèle nous a permis de prédire l’activité biologique d’un ensemble de variants de la boucle E du ribosome qui se lie à des facteurs d'élongation.
Resumo:
Les histones sont des protéines nucléaires hautement conservées chez les cellules des eucaryotes. Elles permettent d’organiser et de compacter l’ADN sous la forme de nucléosomes, ceux-ci representant les sous unités de base de la chromatine. Les histones peuvent être modifiées par de nombreuses modifications post-traductionnelles (PTMs) telles que l’acétylation, la méthylation et la phosphorylation. Ces modifications jouent un rôle essentiel dans la réplication de l’ADN, la transcription et l’assemblage de la chromatine. L’abondance de ces modifications peut varier de facon significative lors du developpement des maladies incluant plusieurs types de cancer. Par exemple, la perte totale de la triméthylation sur H4K20 ainsi que l’acétylation sur H4K16 sont des marqueurs tumoraux spécifiques a certains types de cancer chez l’humain. Par conséquent, l’étude de ces modifications et des événements determinant la dynamique des leurs changements d’abondance sont des atouts importants pour mieux comprendre les fonctions cellulaires et moléculaires lors du développement de la maladie. De manière générale, les modifications des histones sont étudiées par des approches biochimiques telles que les immuno-buvardage de type Western ou les méthodes d’immunoprécipitation de la chromatine (ChIP). Cependant, ces approches présentent plusieurs inconvénients telles que le manque de spécificité ou la disponibilité des anticorps, leur coût ou encore la difficulté de les produire et de les valider. Au cours des dernières décennies, la spectrométrie de masse (MS) s’est avérée être une méthode performante pour la caractérisation et la quantification des modifications d’histones. La MS offre de nombreux avantages par rapport aux techniques traditionnelles. Entre autre, elle permet d’effectuer des analyses reproductibles, spécifiques et facilite l’etude d’un large spectre de PTMs en une seule analyse. Dans cette thèse, nous présenterons le développement et l’application de nouveaux outils analytiques pour l’identification et à la quantification des PTMs modifiant les histones. Dans un premier temps, une méthode a été développée pour mesurer les changements d’acétylation spécifiques à certains sites des histones. Cette méthode combine l’analyse des histones intactes et les méthodes de séquençage peptidique afin de déterminer les changements d’acétylation suite à la réaction in vitro par l’histone acétyltransférase (HAT) de levure Rtt109 en présence de ses chaperonnes (Asf1 ou Vps75). Dans un second temps, nous avons développé une méthode d’analyse des peptides isomériques des histones. Cette méthode combine la LC-MS/MS à haute résolution et un nouvel outil informatique appelé Iso-PeptidAce qui permet de déconvoluer les spectres mixtes de peptides isomériques. Nous avons évalué Iso-PeptidAce avec un mélange de peptides synthétiques isomériques. Nous avons également validé les performances de cette approche avec des histones isolées de cellules humaines érythroleucémiques (K562) traitées avec des inhibiteurs d’histones désacétylases (HDACi) utilisés en clinique, et des histones de Saccharomyces cerevisiae liées au facteur d’assemblage de la chromatine (CAF-1) purifiées par chromatographie d’affinité. Enfin, en utilisant la méthode présentée précédemment, nous avons fait une analyse approfondie de la spécificité de plusieurs HATs et HDACs chez Schizosaccharomyces pombe. Nous avons donc déterminé les niveaux d’acétylation d’histones purifiées à partir de cellules contrôles ou de souches mutantes auxquelles il manque une HAT ou HDAC. Notre analyse nous a permis de valider plusieurs cibles connues des HATs et HDACs et d’en identifier de nouvelles. Nos données ont également permis de définir le rôle des différentes HATs et HDACs dans le maintien de l’équilibre d’acétylation des histones. Dans l’ensemble, nous anticipons que les méthodes décrites dans cette thèse permettront de résoudre certains défis rencontrés dans l’étude de la chromatine. De plus, ces données apportent de nouvelles connaissances pour l’élaboration d’études génétiques et biochimiques utilisant S. pombe.
Resumo:
In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.
Resumo:
Pseudomonas fluorescens EPS62e es va seleccionar com a agent de biocontrol del foc bacterià per la seva eficàcia en el control de Erwinia amylovora. En aquest treball es van desenvolupar mètodes de traçabilitat que van permetre la seva detecció específica i quantificació. Mitjançant les tècniques RAPD i U-PCR es van obtenir fragments d'amplificació diferencial per EPS62e que es van seqüenciar i caracteritzar com marcadors SCAR per dissenyar una PCR en temps real. La PCR a temps real es va utilitzar simultàniament amb mètodes microbiològics per estudiar l'adaptabilitat epifítica de EPS62e en pomera i perera. L'ús combinat de mètodes microbiològics i moleculars va permetre la identificació de tres estats fisiològics de EPS62e: la colonització activa, l'entrada en un estat de viable però no cultivable, i la mort cel·lular. Aquest treball mostra que EPS62e està ben adaptada a la colonització de flors a camp, encoratjant la seva utilització dins d'una estratègia de control biològic contra el foc bacterià.
Resumo:
La presencia de microorganismos patógenos en alimentos es uno de los problemas esenciales en salud pública, y las enfermedades producidas por los mismos es una de las causas más importantes de enfermedad. Por tanto, la aplicación de controles microbiológicos dentro de los programas de aseguramiento de la calidad es una premisa para minimizar el riesgo de infección de los consumidores. Los métodos microbiológicos clásicos requieren, en general, el uso de pre-enriquecimientos no-selectivos, enriquecimientos selectivos, aislamiento en medios selectivos y la confirmación posterior usando pruebas basadas en la morfología, bioquímica y serología propias de cada uno de los microorganismos objeto de estudio. Por lo tanto, estos métodos son laboriosos, requieren un largo proceso para obtener resultados definitivos y, además, no siempre pueden realizarse. Para solucionar estos inconvenientes se han desarrollado diversas metodologías alternativas para la detección identificación y cuantificación de microorganismos patógenos de origen alimentario, entre las que destacan los métodos inmunológicos y moleculares. En esta última categoría, la técnica basada en la reacción en cadena de la polimerasa (PCR) se ha convertido en la técnica diagnóstica más popular en microbiología, y recientemente, la introducción de una mejora de ésta, la PCR a tiempo real, ha producido una segunda revolución en la metodología diagnóstica molecular, como pude observarse por el número creciente de publicaciones científicas y la aparición continua de nuevos kits comerciales. La PCR a tiempo real es una técnica altamente sensible -detección de hasta una molécula- que permite la cuantificación exacta de secuencias de ADN específicas de microorganismos patógenos de origen alimentario. Además, otras ventajas que favorecen su implantación potencial en laboratorios de análisis de alimentos son su rapidez, sencillez y el formato en tubo cerrado que puede evitar contaminaciones post-PCR y favorece la automatización y un alto rendimiento. En este trabajo se han desarrollado técnicas moleculares (PCR y NASBA) sensibles y fiables para la detección, identificación y cuantificación de bacterias patogénicas de origen alimentario (Listeria spp., Mycobacterium avium subsp. paratuberculosis y Salmonella spp.). En concreto, se han diseñado y optimizado métodos basados en la técnica de PCR a tiempo real para cada uno de estos agentes: L. monocytogenes, L. innocua, Listeria spp. M. avium subsp. paratuberculosis, y también se ha optimizado y evaluado en diferentes centros un método previamente desarrollado para Salmonella spp. Además, se ha diseñado y optimizado un método basado en la técnica NASBA para la detección específica de M. avium subsp. paratuberculosis. También se evaluó la aplicación potencial de la técnica NASBA para la detección específica de formas viables de este microorganismo. Todos los métodos presentaron una especificidad del 100 % con una sensibilidad adecuada para su aplicación potencial a muestras reales de alimentos. Además, se han desarrollado y evaluado procedimientos de preparación de las muestras en productos cárnicos, productos pesqueros, leche y agua. De esta manera se han desarrollado métodos basados en la PCR a tiempo real totalmente específicos y altamente sensibles para la determinación cuantitativa de L. monocytogenes en productos cárnicos y en salmón y productos derivados como el salmón ahumado y de M. avium subsp. paratuberculosis en muestras de agua y leche. Además este último método ha sido también aplicado para evaluar la presencia de este microorganismo en el intestino de pacientes con la enfermedad de Crohn's, a partir de biopsias obtenidas de colonoscopia de voluntarios afectados. En conclusión, este estudio presenta ensayos moleculares selectivos y sensibles para la detección de patógenos en alimentos (Listeria spp., Mycobacterium avium subsp. paratuberculosis) y para una rápida e inambigua identificación de Salmonella spp. La exactitud relativa de los ensayos ha sido excelente, si se comparan con los métodos microbiológicos de referencia y pueden serusados para la cuantificación de tanto ADN genómico como de suspensiones celulares. Por otro lado, la combinación con tratamientos de preamplificación ha resultado ser de gran eficiencia para el análisis de las bacterias objeto de estudio. Por tanto, pueden constituir una estrategia útil para la detección rápida y sensible de patógenos en alimentos y deberían ser una herramienta adicional al rango de herramientas diagnósticas disponibles para el estudio de patógenos de origen alimentario.
Resumo:
The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.
Resumo:
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.
Resumo:
Increasingly, the microbiological scientific community is relying on molecular biology to define the complexity of the gut flora and to distinguish one organism from the next. This is particularly pertinent in the field of probiotics, and probiotic therapy, where identifying probiotics from the commensal flora is often warranted. Current techniques, including genetic fingerprinting, gene sequencing, oligonucleotide probes and specific primer selection, discriminate closely related bacteria with varying degrees of success. Additional molecular methods being employed to determine the constituents of complex microbiota in this area of research are community analysis, denaturing gradient gel electrophoresis (DGGE)/temperature gradient gel electrophoresis (TGGE), fluorescent in situ hybridisation (FISH) and probe grids. Certain approaches enable specific aetiological agents to be monitored, whereas others allow the effects of dietary intervention on bacterial populations to be studied. Other approaches demonstrate diversity, but may not always enable quantification of the population. At the heart of current molecular methods is sequence information gathered from culturable organisms. However, the diversity and novelty identified when applying these methods to the gut microflora demonstrates how little is known about this ecosystem. Of greater concern is the inherent bias associated with some molecular methods. As we understand more of the complexity and dynamics of this diverse microbiota we will be in a position to develop more robust molecular-based technologies to examine it. In addition to identification of the microbiota and discrimination of probiotic strains from commensal organisms, the future of molecular biology in the field of probiotics and the gut flora will, no doubt, stretch to investigations of functionality and activity of the microflora, and/or specific fractions. The quest will be to demonstrate the roles of probiotic strains in vivo and not simply their presence or absence.
Resumo:
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.
Resumo:
Specific traditional plate count method and real-time PCR systems based on SYBR Green I and TaqMan technologies using a specific primer pair and probe for amplification of iap-gene were used for quantitative assay of Listeria monocytogenes in seven decimal serial dilution series of nutrient broth and milk samples containing 1.58 to 1.58×107 cfu /ml and the real-time PCR methods were compared with the plate count method with respect to accuracy and sensitivity. In this study, the plate count method was performed using surface-plating of 0.1 ml of each sample on Palcam Agar. The lowest detectable level for this method was 1.58×10 cfu/ml for both nutrient broth and milk samples. Using purified DNA as a template for generation of standard curves, as few as four copies of the iap-gene could be detected per reaction with both real-time PCR assays, indicating that they were highly sensitive. When these real-time PCR assays were applied to quantification of L. monocytogenes in decimal serial dilution series of nutrient broth and milk samples, 3.16×10 to 3.16×105 copies per reaction (equals to 1.58×103 to 1.58×107 cfu/ml L. monocytogenes) were detectable. As logarithmic cycles, for Plate Count and both molecular assays, the quantitative results of the detectable steps were similar to the inoculation levels.