937 resultados para Quadratic forms
Resumo:
We prove a nonvanishing result for Koecher-Maass series attached to Siegel cusp forms of weight k and degree n in certain strips on the complex plane. When n = 2, we prove such a result for forms orthogonal to the space of the Saito-Kurokawa lifts `up to finitely many exceptions', in bounded regions. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
We prove a sub-convex estimate for the sup-norm of L-2-normalized holomorphic modular forms of weight k on the upper half plane, with respect to the unit group of a quaternion division algebra over Q. More precisely we show that when the L-2 norm of an eigenfunction f is one, parallel to f parallel to(infinity) <<(epsilon) k(1/2-1/33+epsilon) for any epsilon > 0 and for all k sufficiently large.
Resumo:
Electromagnetic field produced by a lightning strike to ground causes significant induction to tall objects in the vicinity. The frequency of occurrence of such nearby ground strikes can be higher than the number of direct strikes. Therefore, a complete knowledge on these induced currents is of practical relevance. However, limited efforts towards the characterisation of such induced currents in tall down-conductors could be seen in the literature. Due to the intensification of the background field caused by the descending stepped leader, tall towers/down-conductors can launch upward leaders of significant length. The nonlinearity in the conductance of upward leader and the surrounding corona sheath can alter the characteristics of the induced currents. Preliminary aspects of this phenomenon have been studied by the author previously and the present work aims to perform a detailed investigation on the role of upward leaders in modifying the characteristics of the induced currents. A consistent model for the upward leader, which covers all the essential electrical aspects of the phenomena, is employed. A first order arc model for representing the conductance of upward leader and a field dependant quadratic conductivity model for the corona sheath is employed. The initial gradient in the upward leader and the field produced by the return stroke forms the excitation. The dynamic electromagnetic response is determined by solving the wave equation using thin-wire time-domain formulation. Simulations are carried out initially to ascertain the role of individual parameters, including the length of the upward leader. Based on the simulation results, it is shown that the upward leader enhances the induced current, and when significant in length, can alter the waveshape of induced current from bipolar oscillatory to unipolar. The duration of the induced current is governed by the length of upward leader, which in turn is dependant on the return stroke current and the effective length of the down-conductor. If the current during the upward leader developmental phase is considered along with that after the stroke termination to ground, it would present a bipolar current pulse. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie dagger-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Ito formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus. (C) 2016 AIP Publishing LLC.
Resumo:
In this paper, we present a survey of the recent results on the characterization of the cuspidality of classical modular forms on various groups by a suitable growth of their Fourier coefficients.
Resumo:
It is shown that there are infinitely many primitive cusp forms f of weight 2 with the property that for all X large enough, every interval (X, X + cX(1/4)), where c > 0 depends only on the form, contains an integer n such that the n-th Fourier coefficient of f is nonzero.