954 resultados para QUATERNARY AMMONIUM GROUP
Resumo:
Includes bibliographical references and indexes.
Resumo:
The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric 'teleconnection' and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The presence of glacial sediments across the Rauer Group indicates that the East Antarctic ice sheet formerly covered the entire archipelago and has since retreated at least 15 km from its maximum extent. The degree of weathering of these glacial sediments suggests that ice retreat from this maximum position occurred sometime during the latter half of the last glacial cycle. Following this phase of retreat, the ice sheet margin has not expanded more than ~1 km seaward of its present position. This pattern of ice sheet change matches that recorded in Vestfold Hills, providing further evidence that the diminutive Marine Isotope Stage 2 ice sheet advance in the nearby Larsemann Hills may have been influenced by local factors rather than a regional ice-sheet response to climate and sea-level change.
Resumo:
The Rauer Group is an archipelago in Prydz Bay, East Antarctica. The ice-free islands and the surrounding shallow marine areas provide valuable archives for the reconstruction of the late Pleistocene and Holocene environmental and climatic history of the region. Two sediment records from two marine inlets of Rauer Group have been studied for their sedimentological, geochemical, and biological characteristics. Radiocarbon ages from one of the inlets indicate ice-free conditions within the last glacial cycle, probably during the second half of Marine Isotope Stage 3. Subsequent ice sheet coverage of Rauer Group during the Last Glacial Maxiumum (LGM) can be inferred from a till layer recovered in one of the basins. The inlets became ice-free prior to 11,200 cal yr BP, when biogenic sedimentation started. Deglacial processes in the catchments, however, influenced the inlets until ~9200 cal. yr BP as evidenced by the input of minerogenic material. Marine productivity under relatively open water conditions indicates an early Holocene climate optimum until 8200 cal. yr BP, which is followed by a cooler period with increased sea ice. Warmer conditions are inferred for the mid Holocene, when both basins experienced an input of freshwater between ~5700-3500 cal. yr BP, probably due to ice-sheet melting and increased precipitation on the islands. Neoglacial cooling in the late Holocene since c. 3500 cal yr BP is reflected by an increase in sea ice in both inlets.
Resumo:
Limited information on the East Antarctic Ice Sheet (EAIS) geometry during Marine Isotope Stage 3 (MIS 3; 60-25 ka) restricts our understanding of its behaviour during periods of climate and sea level change. Ice sheet models forced by global parameters suggest an expanded EAIS compared to the Holocene during MIS 3, but field evidence from East Antarctic coastal areas contradicts such modelling, and suggests that the ice sheet margins were no more advanced than at present. Here we present a new lake sediment record, and cosmogenic exposure results from bedrock, which confirm that Rauer Group (eastern Prydz Bay) was ice-free for much of MIS 3. We also refine the likely duration of the Last Glacial Maximum (LGM) glaciation in the region. Lacustrine and marine sediments from Rauer Group indicate the penultimate period of ice retreat predates 50 ka. The lacustrine record indicates a change from warmer/wetter conditions to cooler/drier conditions after ca. 35 ka. Substantive ice sheet re-advance, however, may not have occurred until much closer to 20 ka. Contemporary coastal areas were still connected to the sea during MIS 3, restricting the possible extent of grounded ice in Prydz Bay on the continental shelf. In contrast, relative sea levels (RSL) deduced from field evidence indicate an extra ice load averaging several hundred metres thicker ice across the Bay between 45 and 32 ka. Thus, ice must either have been thicker immediately inland (with a steeper ice profile), or there were additional ice domes on the shallow banks of the outer continental shelf. Further work is required to reconcile the differences between empirical evidence of past ice sheet histories, and the history predicted by ice sheet models from far-field temperature and sea level records.
Resumo:
In this work, the partial molar volumes of glycine and DL-alanine in aqueous solutions of ammonium sulfate at 0.0, 0.1, 0.3, 0.7, and 1.0 mol.kg(-1) are determined between 278.15 and 308.15 K. Transfer volumes were obtained, which are larger for glycine than DL-alanine. On the contrary, the hydration numbers are higher for DL-alanine than glycine, and dehydration of the amino acids is observed with increasing temperature or salt molality. The data suggest that interactions between ion and charged/hydrophilic groups are predominant and, by applying the methodology proposed by Friedman and Krishnan, it was concluded that they are mainly pairwise. A group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect on glycine, alanine and serine in the presence of different electrolytes has been rationalized in terms of the charge density and a parameter accounting for the cation's hydration.
Resumo:
AMMONIUM UPTAKE, TRANSPORT AND NITROGEN ECONOMY IN FOREST TREES Francisco M. Cánovas, Concepción Avila, Fernando N. de la Torre, Rafael A. Cañas, Belén Pascual, Vanessa Castro- Rodríguez, Jorge El-Azaz Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain. Email: canovas@uma.es Forests ecosystems play a fundamental role in the regulation of global carbon fixation and preservation of biodiversity. Forest trees are also of great economic value because they provide a wide range of products of commercial interest, including wood, pulp, biomass and important secondary metabolites. The productivity of most forest ecosystems is limited by low nitrogen availability and woody perennials have developed adaptation mechanisms, such as ectomycorrhizal associations, to increase the efficiency of N acquisition and metabolic assimilation. The efficient acquisition, assimilation and economy of nitrogen are of special importance in trees that must cope with seasonal periods of growth and dormancy over many years. In fact, the ability to accumulate nitrogen reserves and to recycle N is crucial to determine the growth and production of forest biomass. Ammonium is the predominant form of inorganic nitrogen in the soil of temperate forests and many research efforts are addressed to study the regulation of ammonium acquisition, assimilation and internal recycling for the biosynthesis of amino acids, particularly those relevant for nitrogen storage. In our laboratory, we are interested in studying nitrogen metabolism and its regulation in maritime pine (Pinus pinaster L. Aiton), a conifer species of great ecological and economic importance in Europe and for which whole-transcriptome resources are available. The metabolism of phenylalanine plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids and the regulation of this pathway is of broad significance for nitrogen economy of maritime pine. We are currently exploring the molecular properties and regulation of genes involved in the biosynthesis and metabolic fates of phenylalanine in maritime pine. An overview of this research programme will be presented and discussed. Research supported by Spanish Ministry of Economy and Competitiveness and Junta de Andalucía (Grants BIO2015-69285-R, BIO2012-0474 and research group BIO-114).