922 resultados para Pump power


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single-and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 Wof the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. Itis explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons. © 2014 Astro Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose and demonstrate single- and multiple-passband fiber grating transmission filters that are remotely tunable by exploitation of the optical pump-induced thermal effects in Er Yb-codoped fiber sections. A repeatable, wavelength-independent induced phase shift of 0.1p mW is obtained without hysteresis and anisotropic effects. A transmission extinction ratio of .23 dB with a 3-mW change in pump power is achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present, for the first time, a detailed investigation of the impact of second order co-propagating Raman pumping on long-haul 100G WDM DP-QPSK coherent transmission of up to 7082 km using Raman fibre laser based configurations. Signal power and noise distributions along the fibre for each pumping scheme were characterised both numerically and experimentally. Based on these pumping schemes, the Q factor penalties versus co-pump power ratios were experimentally measured and quantified. A significant Q factor penalty of up to 4.15 dB was observed after 1666 km using symmetric bidirectional pumping, compared with counter-pumping only. Our results show that whilst using co-pumping minimises the intra-cavity signal power variation and amplification noise, the Q factor penalty with co-pumping was too great for any advantage to be seen. The relative intensity noise (RIN) characteristics of the induced fibre laser and the output signal, and the intra-cavity RF spectra of the fibre laser are also presented. We attribute the Q factor degradation to RIN induced penalty due to RIN being transferred from the first order fibre laser and second order co-pump to the signal. More importantly, there were two different fibre lasing regimes contributing to the amplification. It was random distributed feedback lasing when using counter-pumping only and conventional Fabry-Perot cavity lasing when using all bidirectional pumping schemes. This also results in significantly different performances due to different laser cavity lengths for these two classes of laser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation and evolution of bound dissipative pulses in the all-normal dispersion Yb-fiber laser based on a novel 45° tilted fiber grating (TFG) are first investigated both numerically and experimentally. Based on the nonlinear polarization rotation technique, the TFG and two polarization controllers (PCs) are exploited for stable self-started passive mode locking. Numerical results show that the formation of bound-state pulses in the all-normal dispersion region is the progress of soliton shaping through the dispersive waves and follows the soliton energy quantization effect. Theoretical and experimental results demonstrate that the formation mechanism of bound-state pulses can be attributed to the high pump strength and effective filter bandwidth. The obtained bound-state dissipative pulses with quasi-rectangular spectral profile have fixed pulse separation as a function of pump power. © 2013 Astro Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Operation of a single-clad Dy 3+-doped ZrF 4-BaF 2-LaF 3-AlF 3-NaF (ZBLAN) fiber laser operating at mid-infrared near 3 μm is presented. The laser is pumped by an Yb 3+-doped silica fiber laser centered at 1088 nm. An output of near 0.1 W with a slope efficiency of up to 23% with respect to absorbed pump power was measured. The laser performance, theoretical modeling and laser spectrum of Dy fiber laser system with respect to various cavity losses are studied. The experimental slope efficiency is more than 4.5 times higher than the previous demonstration, and is 64% of the Stokes efficiency limit. The efficiency was improved by using cavity mirrors of reflectivities of 99 and 50%. The emission central wavelength and spectral width are found to be dependent on the pump power and output coupler, reflectivity. © 2011 by Astro Ltd., published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We experimentally demonstrate pabively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONPbased SA pobebes a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable pabively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 μs were achieved when the input pump power was 110mW. The laser features a low threshold pump power of > 15mW.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present first experimental investigation of fast-intensity dynamics of random distributed feedback (DFB) fiber lasers. We found that the laser dynamics are stochastic on a short time scale and exhibit pronounced fluctuations including generation of extreme events. We also experimentally characterize statistical properties of radiation of random DFB fiber lasers. We found that statistical properties deviate from Gaussian and depend on the pump power.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loss of coherence with increasing excitation amplitudes and spatial size modulation is a fundamental problem in designing Raman fiber lasers. While it is known that ramping up laser pump power increases the amplitude of stochastic excitations, such higher energy inputs can also lead to a transition from a linearly stable coherent laminar regime to a non-desirable disordered turbulent state. This report presents a new statistical methodology, based on first passage statistics, that classifies lasing regimes in Raman fiber lasers, thereby leading to a fast and highly accurate identification of a strong instability leading to a laminar-turbulent phase transition through a self-consistently defined order parameter. The results have been consistent across a wide range of pump power values, heralding a breakthrough in the non-invasive analysis of fiber laser dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here experimental observation of different spatio-temporal generation regimes in quasi-CW Raman fiber laser in the most simple experimental configuration. The generation regimes depend on pump power and range from partial mode-locking to turbulent, and a generation of short-lived pulses. While in temporal domain transitions could be described in quantitative way, in spatio-temporal domain they represent qualitative change in observed dynamics.