939 resultados para Pulse Width Modulation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 40-GHz wavelength tunable mode-locked fiber ring laser based oil cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel system design that can generate the optimized wavelength-tunable optical pulse streams from an uncooled gain-switched Fabry-Perot semiconductor laser using an optical amplifier as external light source. The timing jitter of gain-switched laser has been reduced from about 3 ps to 600 fs and the pulse width has been optimized by using our system. The stability of the system was also experimentally investigated. Our results show that an uncooled gain-switched FP laser system can feasibly produce the stable optical pulse trains with pulse width of 18 ps at the repetition frequency of 5 GHz during 7 h continuous working. We respectively proved the system feasibility under 1 GHz, 2.5 GHz and 5 GHz operation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The continuous demand for highly efficient wireless transmitter systems has triggered an increased interest in switching mode techniques to handle the required power amplification. The RF carrier amplitude-burst transmitter, i.e. a wireless transmitter chain where a phase-modulated carrier is modulated in amplitude in an on-off mode, according to some prescribed envelope-to-time conversion, such as pulse-width or sigma-delta modulation, constitutes a promising architecture capable of efficiently transmitting signals of highly demanding complex modulation schemes. However, the tested practical implementations present results that are way behind the theoretically advanced promises (perfect linearity and efficiency). My original contribution to knowledge presented in this thesis is the first thorough study and model of the power efficiency and linearity characteristics that can be actually achieved with this architecture. The analysis starts with a brief revision of the theoretical idealized behavior of these switched-mode amplifier systems, followed by the study of the many sources of impairments that appear when the real system is implemented. In particular, a special attention is paid to the dynamic load modulation caused by the often ignored interaction between the narrowband signal reconstruction filter and the usual single-ended switched-mode power amplifier, which, among many other performance impairments, forces a two transistor implementation. The performance of this architecture is clearly explained based on the presented theory, which is supported by simulations and corresponding measured results of a fully working implementation. The drawn conclusions allow the development of a set of design rules for future improvements, one of which is proposed and verified in this thesis. It suggests a significant modification to this traditional architecture, where now the phase modulated carrier is always on – and thus allowing a single transistor implementation – and the amplitude is impressed into the carrier phase according to a bi-phase code.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Considers Sampling, Pulse Amplitude Modulation, Multiple Access, Quantisation, Pulse Coded Modulation, Manchester Line Coding, Amplitude Modulation, Double SideBand Suppressed Carrier Modulation, Quadrature Amplitude Modulation and M-ary Shift Keying.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pulses have been obtained. The minimum pulse width achieved was 0.1 msec. A representation of the output versus input light signals gives an hysteresys cycle in the asymmetrical case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio y desarrollo de algoritmos de guerra electrónica {electronic warfare, EW) y radar para su implementación en sistemas de tiempo real. La llegada de los sistemas de radio, radar y navegación al terreno militar llevó al desarrollo de tecnologías para combatirlos. Así, el objetivo de los sistemas de guerra electrónica es el control del espectro electomagnético. Una de la funciones de la guerra electrónica es la inteligencia de señales {signals intelligence, SIGINT), cuya labor es detectar, almacenar, analizar, clasificar y localizar la procedencia de todo tipo de señales presentes en el espectro. El subsistema de inteligencia de señales dedicado a las señales radar es la inteligencia electrónica {electronic intelligence, ELINT). Un sistema de tiempo real es aquel cuyo factor de mérito depende tanto del resultado proporcionado como del tiempo en que se da dicho resultado. Los sistemas radar y de guerra electrónica tienen que proporcionar información lo más rápido posible y de forma continua, por lo que pueden encuadrarse dentro de los sistemas de tiempo real. La introducción de restricciones de tiempo real implica un proceso de realimentación entre el diseño del algoritmo y su implementación en plataformas “hardware”. Las restricciones de tiempo real son dos: latencia y área de la implementación. En esta tesis, todos los algoritmos presentados se han implementado en plataformas del tipo field programmable gate array (FPGA), ya que presentan un buen compromiso entre velocidad, coste total, consumo y reconfigurabilidad. La primera parte de la tesis está centrada en el estudio de diferentes subsistemas de un equipo ELINT: detección de señales mediante un detector canalizado, extracción de los parámetros de pulsos radar, clasificación de modulaciones y localization pasiva. La transformada discreta de Fourier {discrete Fourier transform, DFT) es un detector y estimador de frecuencia quasi-óptimo para señales de banda estrecha en presencia de ruido blanco. El desarrollo de algoritmos eficientes para el cálculo de la DFT, conocidos como fast Fourier transform (FFT), han situado a la FFT como el algoritmo más utilizado para la detección de señales de banda estrecha con requisitos de tiempo real. Así, se ha diseñado e implementado un algoritmo de detección y análisis espectral para su implementación en tiempo real. Los parámetros más característicos de un pulso radar son su tiempo de llegada y anchura de pulso. Se ha diseñado e implementado un algoritmo capaz de extraer dichos parámetros. Este algoritmo se puede utilizar con varios propósitos: realizar un reconocimiento genérico del radar que transmite dicha señal, localizar la posición de dicho radar o bien puede utilizarse como la parte de preprocesado de un clasificador automático de modulaciones. La clasificación automática de modulaciones es extremadamente complicada en entornos no cooperativos. Un clasificador automático de modulaciones se divide en dos partes: preprocesado y el algoritmo de clasificación. Los algoritmos de clasificación basados en parámetros representativos calculan diferentes estadísticos de la señal de entrada y la clasifican procesando dichos estadísticos. Los algoritmos de localization pueden dividirse en dos tipos: triangulación y sistemas cuadráticos. En los algoritmos basados en triangulación, la posición se estima mediante la intersección de las rectas proporcionadas por la dirección de llegada de la señal. En cambio, en los sistemas cuadráticos, la posición se estima mediante la intersección de superficies con igual diferencia en el tiempo de llegada (time difference of arrival, TDOA) o diferencia en la frecuencia de llegada (frequency difference of arrival, FDOA). Aunque sólo se ha implementado la estimación del TDOA y FDOA mediante la diferencia de tiempos de llegada y diferencia de frecuencias, se presentan estudios exhaustivos sobre los diferentes algoritmos para la estimación del TDOA, FDOA y localización pasiva mediante TDOA-FDOA. La segunda parte de la tesis está dedicada al diseño e implementación filtros discretos de respuesta finita (finite impulse response, FIR) para dos aplicaciones radar: phased array de banda ancha mediante filtros retardadores (true-time delay, TTD) y la mejora del alcance de un radar sin modificar el “hardware” existente para que la solución sea de bajo coste. La operación de un phased array de banda ancha mediante desfasadores no es factible ya que el retardo temporal no puede aproximarse mediante un desfase. La solución adoptada e implementada consiste en sustituir los desfasadores por filtros digitales con retardo programable. El máximo alcance de un radar depende de la relación señal a ruido promedio en el receptor. La relación señal a ruido depende a su vez de la energía de señal transmitida, potencia multiplicado por la anchura de pulso. Cualquier cambio hardware que se realice conlleva un alto coste. La solución que se propone es utilizar una técnica de compresión de pulsos, consistente en introducir una modulación interna a la señal, desacoplando alcance y resolución. ABSTRACT This thesis is focused on the study and development of electronic warfare (EW) and radar algorithms for real-time implementation. The arrival of radar, radio and navigation systems to the military sphere led to the development of technologies to fight them. Therefore, the objective of EW systems is the control of the electromagnetic spectrum. Signals Intelligence (SIGINT) is one of the EW functions, whose mission is to detect, collect, analyze, classify and locate all kind of electromagnetic emissions. Electronic intelligence (ELINT) is the SIGINT subsystem that is devoted to radar signals. A real-time system is the one whose correctness depends not only on the provided result but also on the time in which this result is obtained. Radar and EW systems must provide information as fast as possible on a continuous basis and they can be defined as real-time systems. The introduction of real-time constraints implies a feedback process between the design of the algorithms and their hardware implementation. Moreover, a real-time constraint consists of two parameters: Latency and area of the implementation. All the algorithms in this thesis have been implemented on field programmable gate array (FPGAs) platforms, presenting a trade-off among performance, cost, power consumption and reconfigurability. The first part of the thesis is related to the study of different key subsystems of an ELINT equipment: Signal detection with channelized receivers, pulse parameter extraction, modulation classification for radar signals and passive location algorithms. The discrete Fourier transform (DFT) is a nearly optimal detector and frequency estimator for narrow-band signals buried in white noise. The introduction of fast algorithms to calculate the DFT, known as FFT, reduces the complexity and the processing time of the DFT computation. These properties have placed the FFT as one the most conventional methods for narrow-band signal detection for real-time applications. An algorithm for real-time spectral analysis for user-defined bandwidth, instantaneous dynamic range and resolution is presented. The most characteristic parameters of a pulsed signal are its time of arrival (TOA) and the pulse width (PW). The estimation of these basic parameters is a fundamental task in an ELINT equipment. A basic pulse parameter extractor (PPE) that is able to estimate all these parameters is designed and implemented. The PPE may be useful to perform a generic radar recognition process, perform an emitter location technique and can be used as the preprocessing part of an automatic modulation classifier (AMC). Modulation classification is a difficult task in a non-cooperative environment. An AMC consists of two parts: Signal preprocessing and the classification algorithm itself. Featurebased algorithms obtain different characteristics or features of the input signals. Once these features are extracted, the classification is carried out by processing these features. A feature based-AMC for pulsed radar signals with real-time requirements is studied, designed and implemented. Emitter passive location techniques can be divided into two classes: Triangulation systems, in which the emitter location is estimated with the intersection of the different lines of bearing created from the estimated directions of arrival, and quadratic position-fixing systems, in which the position is estimated through the intersection of iso-time difference of arrival (TDOA) or iso-frequency difference of arrival (FDOA) quadratic surfaces. Although TDOA and FDOA are only implemented with time of arrival and frequency differences, different algorithms for TDOA, FDOA and position estimation are studied and analyzed. The second part is dedicated to FIR filter design and implementation for two different radar applications: Wideband phased arrays with true-time delay (TTD) filters and the range improvement of an operative radar with no hardware changes to minimize costs. Wideband operation of phased arrays is unfeasible because time delays cannot be approximated by phase shifts. The presented solution is based on the substitution of the phase shifters by FIR discrete delay filters. The maximum range of a radar depends on the averaged signal to noise ratio (SNR) at the receiver. Among other factors, the SNR depends on the transmitted signal energy that is power times pulse width. Any possible hardware change implies high costs. The proposed solution lies in the use of a signal processing technique known as pulse compression, which consists of introducing an internal modulation within the pulse width, decoupling range and resolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The matched filter detector is well known as the optimum detector for use in communication, as well as in radar systems for signals corrupted by Additive White Gaussian Noise (A.W.G.N.). Non-coherent F.S.K. and differentially coherent P.S.K. (D.P.S.K.) detection schemes, which employ a new approach in realizing the matched filter processor, are investigated. The new approach utilizes pulse compression techniques, well known in radar systems, to facilitate the implementation of the matched filter in the form of the Pulse Compressor Matched Filter (P.C.M.F.). Both detection schemes feature a mixer- P.C.M.F. Compound as their predetector processor. The Compound is utilized to convert F.S.K. modulation into pulse position modulation, and P.S.K. modulation into pulse polarity modulation. The mechanisms of both detection schemes are studied through examining the properties of the Autocorrelation function (A.C.F.) at the output of the P.C.M.F.. The effects produced by time delay, and carrier interference on the output A.C.F. are determined. Work related to the F.S.K. detection scheme is mostly confined to verifying its validity, whereas the D.P.S.K. detection scheme has not been reported before. Consequently, an experimental system was constructed, which utilized combined hardware and software, and operated under the supervision of a microprocessor system. The experimental system was used to develop error-rate models for both detection schemes under investigation. Performances of both F. S. K. and D.P. S. K. detection schemes were established in the presence of A. W. G. N. , practical imperfections, time delay, and carrier interference. The results highlight the candidacy of both detection schemes for use in the field of digital data communication and, in particular, the D.P.S.K. detection scheme, which performed very close to optimum in a background of A.W.G.N.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examine the correlations between the parameters of ultra-narrow off-centred filtering and pulse width on the performance of a wavelength paired Nx40Gbit/s DWDM transmission, consisting of carrier suppressed return-to-zero signal with 0.64 bit/s/Hz (without polarization-division multiplexing) spectral efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 μm without pulse compression, external cavity, gain-or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5 W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examine the correlations between the parameters of ultra-narrow off-centred filtering and pulse width on the performance of a wavelength paired Nx40Gbit/s DWDM transmission, consisting of carrier suppressed return-to-zero signal with 0.64 bit/s/Hz (without polarization-division multiplexing) spectral efficiency. © 2004 Optical Society of America.