939 resultados para Protein Composition
Resumo:
Although shrimp head meal alone does not provide for good growth and survival, fish meal can provide high survival rate. The addition of shrimp head improves this diet. It is suggested that cholesterol present in shrimp could have caused this difference. Composition of the test diets is tabulated, as are proximate chemical analysis of the diets, and the mean initial weights, final weights, weight gains, survival rate, feed consumed, protein consumed, of Penaeus monodon postlarvae, feed conversion and protein efficiency ratio.
Resumo:
A study was carried out to determine the effect of 10 or 20% leaves or seeds in the diet of Penaeus monodon , and the extent to which local ipil-ipil (Leucaena leucocephala ) could replace head shrimp meal. A brief description is given of the experimental methodology, and details of composition of the diet, proximate chemical composition of the diets, mean weight gain and survival of Penaeus monodon larvae fed shrimp head meal and ipil-ipil as protein sources, are presented. Mean weight gains for all groups were poor and not statistically significant. Survival rates for those fed 10% ipil-ipil were significantly higher than those fed 20% diets. Wherever the survival rate was high, mean weight gain was low and vice versa. The presence of the toxic alkaloids mimosine in ipil-ipil could have caused the low survival rate.
Resumo:
Protein powders were prepared from processing waste of prawns either by mechanically squeezing the shell and freeze drying the resultant aqueous extract or by treating the shell with 0.5% sodium hydroxide, filtering it and freeze drying the filtrate. Comparative studies on the proximate composition, amino acid profile, consumer acceptability and nutritional quality of the protein powders showed that the product prepared by freeze drying of the press liquor obtained by passing the waste through a hand operated expeller is better in all aspects studied than the product prepared by mild alkali extraction.
Resumo:
The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.
Resumo:
A factorial experiment was conducted for 60 days to determine of the response of Narrow clawed crayfish Astacus leptodactylus (average weight of 17±2.3 g) to diets containing various protein and energy levels. Nine diets containing three levels of protein (30, 35 and 40 %) and three levels of energy (300,370 and 450 kcal/100g) were formulated and prepared in this trial. Each diet also was used in two levels of salinity include 0 (fresh water) and 12 ppt(Caspian sea water). So this study was conducted with 18 treatments and triplicates random group of 5 crayfish per each 110-litre tank. Weight Gain, Feed conversion ratio (FCR), Protein Efficiency Ratio (PER), Net Protein Utilization (NPU), Daily Food Consumption (DFC), Survival (SVR) and body composition of tail-muscle meat of animal were determined. Comparing the growth parameters in response to interaction between protein, energy and salinity levels demonstrated that all growth parameters have difference between them significantly (p<0.05). Comparing between survival in fresh and Caspian Sea water showed difference significantly. Compare the body composition results indicate the greatest amount of protein absorption in diet number 2(30/370) on fresh water condition. Results from this study indicate that narrow clawed crayfish can be fed a practical diet containing 30% protein and 370 Kcal/100g on non-salinity water which is the optimize CP percentage for their producer’s profits.
Resumo:
The objective of this study was to develop soy protein fortified fish sticks from Tilapia. Two preliminary studies were conducted to select the best fish-soy protein-spice mixture combination with four treatments to develop breaded fish sticks. Developed products were organoleptically assessed using 30 untrained panellists with 7-point hedonic scale. The product developed with new combination was compared with market product. Sixty percent of Tilapia fish mince, 12% of Defatted Textured Soy protein (DTSP), 1.6% of salt and 26.4% of ice water (<5°C) and Spice mixture containing 3g of garlic, 2g of pepper 2g of onion and 1.6g of cinnamon were selected as the best formula to manufacture the product. There was no significant difference when compared with market samples in relation to the organoleptic attributes. Proximate composition of the product was 25.76% of crude protein, 2.38% of crude fat, 60.35% of moisture and2.75% of ash. Products were packaged in Poly Vinyl Chloride clear package (12 gauge) and were stored at -1°C and changes in moisture content, peroxide value, pH value and microbiological parameters were assessed during five weeks of storage. Organoleptic acceptability was not changed significantly in all parameters tested (p>0.05). Total aerobic count and yeast and mould count were in acceptable ranges in frozen storage for 5 weeks. Data were analyzed using AN OVA and Friedman non-parametric test.
Resumo:
The main aim of this research was to identify fatty acids composition of Caspian sea of White fish Rutilus frisi kutum tissue and their changes during one year cold storage (-18Ċ).The secondary aim was to determine the changes of moisture, ash, protein, fat, and to investigate the effects of storage time on peroxide, TBAi, FFA, and extractability of myofibrillar proteins of the fish tissue during one year cold storage (-18 Ċ). 10 samples of (Rutilus frisi kutum) were randomly collected from Anzali landings. The samples were frozen at -30 Ċ and kept in cold storage at -18Ċ for one year. According to time table, the samples were examined. The results showed that 27 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 74/09 and 21/63 %, respectively, in fresh tissue. So that DHA (C22:6) oleic acid (C18:1c) had high amounts (15/07 ,20/57 ) among the UFA and palmitic acid (C16:0) was the most (13/09 %) among the SFA. The effects of freezing and cold storage on fish tissue showed that UFA and SFA contents have reached to 58/79 and 22/17 %, respectively, at the end of cold storage. It indicated that these compound change to each other during frozen storage. Also ω-3 and ω-6 series of fatty acids was 24/22 and 15/56% in fresh tissue, but their contents decreased to 8/68 and 5/11% at the end of period. Among the fatty acids C22:6, C18:1c and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level expected for C18:0. Results showed that moisture, ash, protein, and fat contents were 75/9±0/03, 1/28±0/012, 21/8±0/2, and 4/1±0/01 % respectively, in fresh tissue. The moisture, ash, protein, and fat contents were 72/3±0/04, 1/83±0/05, 1/91±0/01 and 19/9±0/01 % respectively, at the end of storage period. Lipid damage was measured on the basis of free fatty acids (FFA), peroxide value (PV), and Thiobarbituric acid index (TBA-i). PV, TBARS and FFA concentration of frozen Caspian Sea white fish stored at -18 Ċ the temporal variation of these three variables were statistically significant (p<0.001). Results of White fish myofibrillar proteins showed aggregation of bound reduced for stored at 12 months. SDS-PAGE analysis revealed that, the intensity of the myosin heavy chain and actin bound was reduced with increasing storage time. SDS-PAGE patterns showed that myosin heavy chain was much more susceptible to hydrolysis than actin. Key words: Rutilus frisi kutum, frozen storage, ω-3, ω-6, protein myofibrillar
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system to investigate the effect of high dietary starch levels on the growth performance, blood chemistry, starch utilization and body composition of gibel carp (Carassius auratus var. gibelio). Five isonitrogenous and isocarloric experimental diets were formulated to contain different starch levels (24%, 28%, 32%, 36% and 40% respectively). Triplicate groups of fish (24 fish per tank with an average body weight, of 8.5 g) were assigned to each diet. The results showed that dietary carbohydrate levels significantly affected the growth performance, hepatopancreatic lipid content, pyruvate kinase (PK) activity and whole-body lipid content. Growth performance, body crude lipid and plasma glucose concentrations showed a decreasing trend with an increase in dietary starch from 24% to 40%. Pyruvate kinase activities and hepatopancreatic lipid content showed an increasing trend with the dietary starch increasing from 24% to 32%, and then a decreasing trend with the dietary starch increasing from 32% to 40%. No significant difference in the hepatopancreatic hexokinase (HK) activity, plasma triglyceride contents, body crude protein, ash and calcium (Ca) and phosphorus (P) contents was observed between different treatments. In conclusion, higher dietary starch levels (32-40%) significantly (P < 0.05) decreased the growth of gibel carp in the present study.
Resumo:
To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186 μ mol/L and the biochemical composition, carbonic anhydrase (CA), and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate, and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186 μ mol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μ mol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.
Resumo:
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 mul CO2 l(-1) and aeration gave the highest biomass yield (634 mg dry wt l(-1)), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g(-1) dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:5omega3) (16 mg g(-1) dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.
Resumo:
To investigate the nature of compenstory growth in fish, an 8 week study at 28 degreesC was performed on juvenile gibel carp Carassius auratus gibelio weighing 6.6 g. Fish were starved for 0 (control), 1 (Sl)or 2 (S2) weeks and then re-fed to satiation For 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish, The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat:lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein. lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight. lipid. ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 3 weeks in the SZ group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
F-4 generation of human growth hormone (hGH) gene-transgenic red common carp, and the non-transgenic controls were fed for 8 weeks on purified diets with 20%, 30% or 40% protein. Analysis of whole-body amino acids showed that the proportions of lysine, leucine, phenylalanine, valine and alanine, as percentages of body protein, increased significantly, while those of arginine, glutamic acid and tyrosine decreased, with increases in dietary protein level in at least one strain of fish. Proportions of the other amino acids were unaffected by the diets. The proportions of lysine and arginine were significantly higher, while those of leucine and alanine were lower in the transgenics than in the controls in at least one diet group. Proportions of the other amino acids were unaffected by strain. The results suggest that the whole-body amino acid profile of transgenic carp, when expressed as proportions of body protein, was in general, similar to that of the non-transgenic controls. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The F-4 generation of human growth hormone (hGH) transgenic red common carp Cyprinus carpio had significantly higher growth rates than the non-transgenic controls. Protein and energy intakes were significantly higher in the transgenic carp than in the controls fed the 20% protein diet, but were not different between the two strains fed diets with 30 and 40% protein. Faecal protein loss, as a proportion of protein intake, was significantly lower in the transgenics than in the controls fed diets with 20 and 30% protein, but was not different between the two strains Fed diet with 40% protein. Faecal energy loss, as a proportion of energy intake, was significantly lower in the transgenics than in the controls fed diet with 20% protein, but was not different between the two strains fed diets with 30 and 40% protein. Recovered protein, as a proportion of protein intake, was significantly higher in the transgenics than in the controls fed all diets, whereas recovered energy was significantly higher in the transgenic fish fed the 40% protein diet. For fish fed each diet, the transgenics had significantly higher body contents of dry matter and protein, but lower contents of lipid than the controls. It was concluded that transgenics were more efficient in utilizing dietary protein than the controls. it a lower dietary protein level; transgenics achieved higher growth rates mainly by increasing feed intake; at higher levels of dietary protein, transgenics achieved higher growth rates mainly through a higher energy conversion efficiency. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
The glycoproteins and glycolipids from membranes of virulent strain Z and avirulent strain M of Mycoplasma hyopneumoniae have been compared. The proteins and the glycoproteins were identified by SDS-polyacrylamide gel electrophoresis and concanavalin A-biotin labeling, respectively. The membrane preparation contained approximately 34 protein bands with molecular weights between 20 KD and 100 KD. The concanavalin A-biotin system reacted with a glycoprotein of a molecular weight of approximately 28,000 from avirulent strain M and did not react with the correspondent band from virulent strain Z. The membrane glycolipids of both strains consisted of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), and the percentages of 16:0, 18:0, and 18:1 fatty acids comprised more than 80% of the total fatty acids of membrane glycolipids. The 18:0 fatty acid of MGDG in avirulent strain M was twofold higher than that of virulent strain Z.
Resumo:
The main light-harvesting chlorophyll a/b -protein complex (LHC II) has been isolated directly from thylakoid membranes of shiphonous green alga, Bryopsis corticulans Setch. by using two consecutive runs of anion exchange and gel-filtration chromatography. Monomeric and trimeric subcomplexes of LHC 11 were obtained by using sucrose gradient ultracentrifugation. Pigment analysis by reversed-phase high performance liquid chromatography showed that chlorophyll a (Chl a), chlorophyll b (Chl b), neoxanthin, violaxanthin and siphonaxanthin were involved in LHC 11 from B. corticulans. The properties of electronic transition of monomeric LHC II showed similarities to those of trimeric LHC II. Circular dichroism spectroscopy showed that strong intramolecular interaction of excitonic dipoles between Chl a and between Chl b exist in one LHC II apoprotein, while the intermolecular interaction of these dipoles can be intensified in the trimeric structure. The monomer has high efficient energy transfer from Chl b and siphonaxanthin to Chl a similarly to that of the trimer. Our results suggest that in B. corticulans, LHC II monomer has high ordered pigment organization that play effective physiological function as the trimer, and thus it might be also a functional organization existing in thylakoid membrane of B. corticulans.