826 resultados para Proposal writing in human services
Resumo:
Essential hypertension is a common multifactorial trait that results in a significantly increased risk for heart attack and stroke. The condition has a genetic basis, although at present the number of genes is unknown. In order to identify such genes, we are utilising a linkage scanning approach using microsatellite markers and affected sibships. Here we provide evidence for the location of at least one hypertension susceptibility locus on chromosome 17. Analysis of 177 affected sibpairs gave evidence for significant excess allele sharing to D17S949 (SPLINK: P=0.0029; MAPMAKER SIBS: P=0.0033; ASPEX: P=0.0061; GENEHUNTER: P=0.0096; ANALYZE (SIBPAIR): P=0.0025) on 17q22–24, with significant allele sharing also indicated for an additional marker, D17S799 (SPLINK: P=0.025; MAPMAKER SIBS: P= 0.025) located close to the centromere. Since these two genomic regions are well separated, our results indicate that there may be more than one chromosome 17 locus affecting human blood pressure. Moreover, further investigation of this chromosome, utilizing a polymorphism within the promoter of the iNOS candidate gene, NOS2A, revealed both increased allele sharing among sibpairs (SPLINK: P=0.02; ASPEX: P=0.00004) and positive association (P= 0.034) of NOS2A to essential hypertension. Hence these results indicate that chromosome 17 and, more specifically, the NOS2A gene may play a role in human essential hypertension.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.
Resumo:
Purpose To investigate the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness of young adults. Methods A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 15 emmetropic young adults over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, – 2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) in diurnal rhythms were examined. Results Both axial length and choroidal thickness underwent significant diurnal changes on each of the three measurement days (p<0.0001). The introduction of monocular hyperopic defocus resulted in significant changes in the diurnal variations observed in both parameters (p<0.05). A significant (p<0.001) increase in the mean amplitude (peak to trough) of change in axial length (mean increase, 0.016 ± 0.005 mm) and choroidal thickness (mean increase, 0.011 ± 0.003 mm) was observed on day 2 with hyperopic defocus compared to the two ‘no defocus’ days (days 1 and 3). At the second measurement (mean time 12:10 pm) on the day with hyperopic defocus, the eye was significantly longer by 0.012 ± 0.002 mm compared to the other two days (p<0.05). No significant difference was observed in the average timing of the daily peaks in axial length (mean peak time 12:12 pm) and choroidal thickness (21:02 pm) over the three days. Conclusions The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of the diurnal change in axial length and choroidal thickness that returned to normal the following day after removal of the blur stimulus.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Resumo:
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg -1 ·min -1; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg -1) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (?75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (?50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1? mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
Resumo:
We examined acute molecular responses in skeletal muscle to divergent exercise stimuli by combining consecutive bouts of resistance and endurance exercise. Eight men [22.9 ± 6.3 yr, body mass of 73.2 ± 4.5 kg, peak O2 uptake (V?O2peak) of 54.0 ± 5.7 ml·kg-1·min-1] were randomly assigned to complete trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1 repetition maximum) followed by a bout of endurance exercise (30 min cycling, 70% V?O2peak) or vice versa. Muscle biopsies were obtained from the vastus lateralis at rest, 15 min after each exercise bout, and after 3 h of passive recovery to determine early signaling and mRNA responses. Phosphorylation of Akt and Akt1Ser473 were elevated 15 min after resistance exercise compared with cycling, with the greatest increase observed when resistance exercise followed cycling (?55%; P < 0.01). TSC2-mTOR-S6 kinase phosphorylation 15 min after each bout of exercise was similar regardless of the exercise mode. The cumulative effect of combined exercise resulted in disparate mRNA responses. IGF-I mRNA content was reduced when cycling preceded resistance exercise (-42%), whereas muscle ring finger mRNA was elevated when cycling was undertaken after resistance exercise (?52%; P < 0.05). The hexokinase II mRNA level was higher after resistance cycling (?45%; P < 0.05) than after cycling-resistance exercise, whereas modest increases in peroxisome proliferator-activated receptor gamma coactivator-1? mRNA did not reveal an order effect. We conclude that acute responses to diverse bouts of contractile activity are modified by the exercise order. Moreover, undertaking divergent exercise in close proximity influences the acute molecular profile and likely exacerbates acute "interference".
Resumo:
Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ?7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser 473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr 308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P < 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise-induced bioeffects in skeletal muscle.
Resumo:
This paper discusses the teaching of writing within the competing and often contradictory spaces of high-stakes testing and the practices and priorities around writing pedagogy in diverse school communities. It uses socio-spatial theory to examine the real-and-imagined spaces (Soja, 1996) that influence and are influenced by teachers’ pedagogical priorities for writing in two linguistically diverse elementary school case studies. Methods of critical discourse analysis are used to examine rich data sets to make visible the discourses and power relations at play in the case schools. Findings show that when teachers’ practices focus on the teaching of structure and skills alongside identity building and voice, students with diverse linguistic backgrounds can produce dramatic, authoritative and resonant texts. The paper argues that “thirdspaces” can be forged that both attend to accountability requirements, yet also give the necessary attention to more complex aspects of writing necessary for students from diverse and multilingual backgrounds to invest in writing as a creative and critical form of communication for participation in society and the knowledge economy.
Resumo:
The production of culture is today a matter of ‘user generated content’ and young people are vital participants as ‘prosumers’, i.e. both producers and consumers, of cultural products. Among other things, they are busy creating fan works (stories, pictures, films) based on already published material. Using the genre fan fiction as a point of departure, this article explores the drivers behind net communities organised around fan culture and argues that fan fiction sites can in many aspects be regarded as informal learning settings. By turning to the rhetoric principle of imitatio, the article shows how in the collective interactive processes between readers and writers such fans develop literacies and construct gendered identities.
Resumo:
The article discusses the issues of resistance; that is resistance by prisoners to the various manifestations of power operating in high security prisons, as well as that of attempted shifts in the regime from physical to psychological control. Other topics highlighted include legitimacy and 'official discourse', mourning and the construction of 'ungrievable lives' and the importance of finding a way out of the cycle of violence, which high security regimes perpetuate.
Resumo:
We previously showed that integrin alphavbeta3 overexpression and engagement by its ligand vitronectin increased adhesion, motility, and proliferation of human ovarian cancer cells. In search of differentially regulated genes involved in these tumor biological events, we previously identified the integrin-linked kinase (ILK) to be under control of alphavbeta3. In the present investigation we demonstrated significantly upregulated ILK protein as a function of alphavbeta3 in two ovarian cancer cell lines, OV-MZ-6 and OVCAR-3, and proved co-localization at the surface of alphavbeta3-overexpressing cells adherent to vitronectin. Increase of ILK protein was reflected by enhanced ILK promoter activity, an effect, which we further characterized with regard to transcriptional response elements involved. Abrogation of NF-kappaB/c-rel or p53 binding augmented ILK promoter activity and preserved induction by alphavbeta3. The AP1-mutant exhibited decreased promoter activity but was also still inducible by alphavbeta3. Disruption of the two DNA consensus motifs for Ets proteins led to divergent observations: mutation of the Ets motif at promoter position -462 bp did not significantly alter promoter activity but still allowed response to alphavbeta3. In contrast, disruption of the second Ets motif at position -85 bp did not only lead to slightly diminished promoter activity but also, in that case, abrogated ILK promoter induction by alphavbeta3. Subsequent co-transfection studies with ets-1 in the presence of the second Ets motif led to additional induction of ILK promoter activity. Taken together, these data suggest that ets-1 binding to the second Ets DNA motif strongly contributes to alphavbeta3-mediated ILK upregulation. By increasing ILK as an important integrin-proximal kinase, alphavbeta3 may promote its intracellular signaling and tumor biological processes arising thereof in favor of ovarian cancer metastasis.
Resumo:
Tumour necrosis factor (TNF)alpha is implicated in the relationship between obesity and insulin resistance/ type 2 diabetes. In an effort to understand this association better we (i) profiled gene expression patterns of TNF, TNFR1 and TNFR2 and (ii) investigated the effects of TNF on glucose uptake in isolated adipocytes and adipose tissue explants from omental and subcutaneous depots from lean, overweight and obese individuals. TNF expression correlated with expression of TNFR2, but not TNFR1, and TNF and TNFR2 expression increased in obesity. TNFR1 expression was higher in omental than in subcutaneous adipocytes. Expression levels of TNF or either receptor did not differ between adipocytes from individuals with central and peripheral obesity. TNF only suppressed glucose uptake in insulin-stimulated subcutaneous tissue and this suppression was only observed in tissue from lean subjects. These data support a relationship between the TNF system and body mass index (BMI), but not fat distribution, and suggest depot specificity of the TNF effect on glucose uptake. Furthermore, adipose tissue from obese subjects already appears insulin 'resistant' and this may be a result of the increased TNF levels.
Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence
Resumo:
The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.
Resumo:
Upon overexpression of integrin αvβ3 and its engagement by vitronectin, we previously showed enhanced adhesion, proliferation, and motility of human ovarian cancer cells. By studying differential expression of genes possibly related to these tumor biological events, we identified the epidermal growth-factor receptor (EGF-R) to be under control of αvβ3 expression levels. Thus in the present study we characterized αvβ3-dependent changes of EGF-R and found significant upregulation of its expression and activity which was reflected by prominent changes of EGF-R promoter activity. Upon disruption of DNA-binding motifs for the transcription factors p53, ETF, the repressor ETR, p50, and c-rel, respectively, we sought to identify DNA elements contributing to αvβ3-mediated EGF-R promoter induction. Both, the p53- and ETF-mutant, while exhibiting considerably lower EGF-R promoter activity than the wild type promoter, retained inducibility by αvβ3. Mutation of the repressor motif ETR, as expected, enhanced EGF-R promoter activity with a further moderate increase upon αvβ3 elevation. The p50-mutant displayed EGF-R promoter activity almost comparable to that of the wild type promoter with no impairment of induction by αvβ3. However, the activity of an EGF-R promoter mutant displaying a disrupted c-rel-binding motif did not only prominently decline, but, moreover, was not longer responsive to enhanced αvβ3, involving this DNA element in αvβ3-dependent EGF-R upregulation. Moreover, αvβ3 did not only increase the EGF-R but, moreover, also led to obvious co-clustering on the cancer cell surface. By studying αvβ3/EGF-R-effects on the focal adhesion kinase (FAK) and the mitogen activated protein kinases (MAPK) p44/42 (erk−1/erk−2), having important functions in synergistic crosstalk between integrins and growth-factor receptors, we found for both significant enhancement of expression and activity upon αvβ3/VN interaction and cell stimulation by EGF. Upregulation of the EGF-R by integrin αvβ3, both receptor molecules with a well-defined role as targets for cancer treatment, might represent an additional mechanism to adapt synergistic receptor signaling and crosstalk in response to an altered tumor cell microenvironment during ovarian cancer progression.