896 resultados para Profile stratification
Resumo:
At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.
Resumo:
This study was undertaken by UKOLN on behalf of the Joint Information Systems Committee (JISC) in the period April to September 2008. Application profiles are metadata schemata which consist of data elements drawn from one or more namespaces, optimized for a particular local application. They offer a way for particular communities to base the interoperability specifications they create and use for their digital material on established open standards. This offers the potential for digital materials to be accessed, used and curated effectively both within and beyond the communities in which they were created. The JISC recognized the need to undertake a scoping study to investigate metadata application profile requirements for scientific data in relation to digital repositories, and specifically concerning descriptive metadata to support resource discovery and other functions such as preservation. This followed on from the development of the Scholarly Works Application Profile (SWAP) undertaken within the JISC Digital Repositories Programme and led by Andy Powell (Eduserv Foundation) and Julie Allinson (RRT UKOLN) on behalf of the JISC. Aims and Objectives 1.To assess whether a single metadata AP for research data, or a small number thereof, would improve resource discovery or discovery-to-delivery in any useful or significant way. 2.If so, then to:a.assess whether the development of such AP(s) is practical and if so, how much effort it would take; b.scope a community uptake strategy that is likely to be successful, identifying the main barriers and key stakeholders. 3.Otherwise, to investigate how best to improve cross-discipline, cross-community discovery-to-delivery for research data, and make recommendations to the JISC and others as appropriate. Approach The Study used a broad conception of what constitutes scientific data, namely data gathered, collated, structured and analysed using a recognizably scientific method, with a bias towards quantitative methods. The approach taken was to map out the landscape of existing data centres, repositories and associated projects, and conduct a survey of the discovery-to-delivery metadata they use or have defined, alongside any insights they have gained from working with this metadata. This was followed up by a series of unstructured interviews, discussing use cases for a Scientific Data Application Profile, and how widely a single profile might be applied. On the latter point, matters of granularity, the experimental/measurement contrast, the quantitative/qualitative contrast, the raw/derived data contrast, and the homogeneous/heterogeneous data collection contrast were discussed. The Study report was loosely structured according to the Singapore Framework for Dublin Core Application Profiles, and in turn considered: the possible use cases for a Scientific Data Application Profile; existing domain models that could either be used or adapted for use within such a profile; and a comparison existing metadata profiles and standards to identify candidate elements for inclusion in the description set profile for scientific data. The report also considered how the application profile might be implemented, its relationship to other application profiles, the alternatives to constructing a Scientific Data Application Profile, the development effort required, and what could be done to encourage uptake in the community. The conclusions of the Study were validated through a reference group of stakeholders.
Resumo:
This is a version of the Jisc ‘Six Elements of Digital Capabilities’ model, specifically for learners. It is an update on the earlier ‘7 elements of digital literacy’ model (2009) and has many continuities with this framework. This version was produced in response to feedback that the base model alone does not provide enough detail to support embedding into practice. However, it is an example of how the base model could be used to define the digital capabilities of learners and is meant to be adapted to suit specific settings.
Resumo:
This is a version of the Jisc ‘Six Elements of Digital Capabilities’ model, specifically for research students and research sta . It is an update on the earlier ‘7 elements of digital literacy’ model (2009) and has many continuities with this framework. It is one example of how the base model is being used.
Resumo:
This is a version of the Jisc ‘Six Elements of Digital Capabilities’ model, specifically for teaching sta or for academic sta in their teaching role. It is an update on the earlier ‘7 elements of digital literacy’ model (2009) and has many continuities with this framework. This version was produced in response to feedback that the base model alone does not provide enough detail to support embedding into practice. However, it is an example of how the base model could be used to define the digital capabilities of teaching sta and is meant to be adapted to suit specific settings.
Resumo:
This paper sets out an optimum synthesis methodology for wheel profiles of railway vehicles in order to secure good dynamic behaviour with different track configurations. Specifically, the optimisation process has been applied to the case of rail wheelsets mounted on double gauge bogies, that move over two different gauges, which also have different types of rail: the Iberian gauge (1668 mm) and the UIC gauge (1435 mm). Optimisation is performed using Genetic Algorithms and traditional optimisation methods in a complementary way. The objective function used is based on an ideal equivalent conicity curve which ensures good stability on straight sections and also proper negotiation of curves. To this end the curve is constructed in such a way that it is constant with a low value for small lateral wheelset displacements (with regard to stability), and increases as the displacements increase (to facilitate negotiation of curved sections). Using this kind of ideal conicity curve also enables a wheel profile to be secured where the contact points have a larger distribution over the active contact areas, making wear more homogeneous and reducing stresses. The result is a wheel profile with a conicity that is closer to the target conicity for both gauges studied, producing better curve negotiation while maintaining good stability on straight sections of track. The paper shows the resultant wheel profile, the contact curves it produces, and a number of dynamic analyses demonstrating better dynamic behaviour of the synthesised wheel on curved sections with respect to the original wheel.
Resumo:
Background: Maladaptive behavior has been reported as a phenotypical feature in Prader–Willi syndrome (PWS). It severely limits social adaptation and the quality of life of children and adults with the syndrome. Different factors have been linked with the intensity and form of these behavioral disturbances but there is no consensus about the cause. Consequently, there is still controversy regarding management strategies and there is a need for new data. Methods: The behavior of 100 adults with PWS attending a dedicated center was assessed using the Developmental Behavior Checklist for Adults (DBC-A) and the PWS-specific Hyperphagia Questionnaire. The DBC-A was completed separately by trained caregivers at the center and relatives or caregivers in a natural setting. Genotype, gender, age, degree of obesity and cognitive impairment were analyzed as variables with a hypothetical influence on behavioral features. Results: Patients showed a relatively high rate of behavioral disturbances other than hyperphagia. Disruptive and social relating were the highest scoring DBC-A subscales whereas anxiety/antisocial and self-absorbed were the lowest. When hospital caregiver and natural caregiver scores were compared, scores for the latter were higher for all subscales except for disruptive and anxiety/antisocial. These effects of institutional management were underlined. In the DBC-A, 22 items have descriptive indications of PWS behavior and were used for further comparisons and correlation analysis. In contrast to previous reports, rates of disturbed behavior were lower in patients with a deletion genotype. However, the behavioral profile was similar for both genotypes. No differences were found in any measurement when comparing type I and type II deletions. The other analyzed variables showed little relevance. Conclusions: Significant rates of behavioral disorders were highlighted and their typology described in a large cohort of adults with PWS. The deletion genotype was related to a lower severity of symptoms. Some major behavioral problems, such as hyperphagia, may be well controlled if living circumstances are adapted to the specific requirements of individuals with PWS.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.
To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.
In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.
Resumo:
Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.