891 resultados para Product life cycle -- Environmental aspects
Resumo:
The development of Metacuterebra apicalis in laboratory conditions is described. The natural host, Oryzomys subflavus, and laboratory white rats were used as experimental hosts. The life cycle, from oviposition to the deaths of adults, was completed in about 73 days. The incubation period of eggs was about 10 days; the parasitic larval phase lasted 23 days in the natural host and 26 days in white rats; pupa lived for 32 days and adults survived for six days.
Resumo:
It has been observed that university professors sometimes become less research active in their later years. This paper models the decision to become inactive as a utility maximising problem under conditions of uncertainty and derives an age-dependent activity condition for the level of research productivity. The model implies that professors who are close to retirement age are more likely to become inactive when faced with setbacks in their research while those who continue research do not lower their activity levels. Using data from the University of Iceland, we find support for the model’s predictions. The model suggests that universities should induce their older faculty to remain research active by striving to make their research more productive and enjoyable, maintaining peer pressure, reducing job security and offering higher performance related pay.
Resumo:
We develop a life-cycle model of the labor market in which different worker-firm matches have different quality and the assignment of the right workers to the right firms is time consuming because of search and learning frictions. The rate at which workers move between unemployment, employment and across different firms is endogenous because search is directed and, hence, workers can choose whether to seek low-wage jobs that are easy to find or high-wage jobs that are hard to find. We calibrate our theory using data on labor market transitions aggregated across workers of different ages. We validate our theory by showing that it predicts quite well the pattern of labor market transitions for workers of different ages. Finally, we use our theory to decompose the age profiles of transition rates, wages and productivity into the effects of age variation in work-life expectancy, human capital and match quality.
Resumo:
The life cycle of ear mites of the genus Raillietia Trouessart consists of egg, larva, proto-and deutonymph and adult. The proto-and deutonymph are free living, non feeding instars. The teneral adult is the transfer stage. The minimum period required for completion of the life cycle is approximately eight days.
Resumo:
Inbreeding depression is one of the hypotheses explaining the maintenance of females within gynodioecious plant populations. However, the measurement of fitness components in selfed and outcrossed progeny depends on life-cycle stage and the history of inbreeding. Comparative data indicate that strong inbreeding depression is more likely to occur at later life-cycle stages. We used hermaphrodite individuals of Silene vulgaris originating from three populations located in different valleys in the Swiss Alps to investigate the effect of two generations of self- and cross-fertilization on fitness components among successive stages of the life cycle in a glasshouse experiment. We detected significant inbreeding depression for most life-cycle stages including: the number of viable and aborted seeds per fruit, probability of germination, above ground biomass, probability of flowering, number of flowers per plant, flower size and pollen viability. Overall, the intensity of inbreeding depression increased among successive stages of the life cycle and cumulative inbreeding depression was significantly stronger in the first generation (delta approximately 0.5) compared with the second generation (delta approximately 0.35). We found no evidence for synergistic epistasis in our experiment. Our finding of more intense inbreeding depression during later stages of the life cycle may help to explain the maintenance of females in gynodioecious populations of S. vulgaris because purging of genetic load is less likely to occur.
Resumo:
Postembryonic development of Misumenops pallida (Keyserling) (Araneae, Thomisidae), one of the most abundant predator species in soybean fields in Buenos Aires Province (Argentina) was studied. The life cycle was observed in the laboratory from egg sacs collected in the field, and from egg sacs spined in the laboratory by gravid females collected in the field. Results indicated that instar length and feeding rate increased throughout the life cycle being higher in females than in males. Greater mortality was observed to third and fourth instars decreasing thereafter. These results may contribute to deternmine the efficiency of this species as a natural enemy of insect pests of soybean.
Resumo:
A cohort of 100 eggs of Triatoma mazzottii Usinger was studied to obtain information on its life cycle. Egg incubation took 24 days; mean duration of 1st, 2nd, 3rd, 4th, and 5th instar nymphs was 27, 36, 39, 46 and 64 days respectively; mean time from egg to adult was 236 days. The total duration of the nymphal stages was 212 days. The total nymph mortality in cohort was 16.3% and the embryonic egg mortality was 14.0%. The grater mortality occured in the 2nd instar. The average number of eggs/female/week was 9.8 during 15 weeks of observation. Of the total eggs laid (2,514), only 58.7% hatched. The total of insects that achieved the adult stage (72), 38 were females (52.8%), and 34 were males (47.2%). The influence of age and feeding on the first mating of T. mazzottii were also studied. It was found that the first mating depended on the male's age and it was on the average 30 days after the last imaginal molt. The female could be mating since 2nd days after the imaginal life. The nutritional status did not play an important role in the capacity of the insect for the first mating.
Resumo:
The snails Lymnaea (Radix) luteola exhibited marked variations in growth, longevity, and attaining sexual maturity at different temperatures and diets. At 10°C, irrespective of foods, pH and salinity of water, the snails had minimum life span, maximum death rate and lowest growth rate. At 15°C, the growth rate was comparatively higher and the snails survived for a few more days. But at these temperatures they failed to attain sexual maturity. Snails exposed to pH 5 and 9 at 20°, 25°, 30°, 35°C and room temperatures (19.6°-29.6°C); to 0.5, 1.5 and 2.5 NaCl at 20° and 35ºC; to 2.5 NaCl at 25°C and room temperatures failed to attain sexual maturity. The snails exposed to pH 7 and different salinity grades at 20°, 25°, 30°, 35°C and room temperatures became sexually mature between 25-93 days depending upon the type of foods used in the culture.
Resumo:
Review of the book : "Lives of a biologist: Adventures in a century of extraordinary science", by J.T. Bonner, Harvard University Press, Cambridge, USA
Resumo:
The life cycle of Lutzomyia shannoni (Dyar), was described for laboratory conditions with maximum daily temperatures of 27-30°C, minimum daily temperatures of 22-27°C and relative humidity between 87-99 %. Life cycle in each stage was as follows: egg 6-12 days (ave. 8.5 days); first stage larva 5-13 days (ave. 9.6 days); second stage larva 4-13 days (ave. 9.2 days ); third stage larva 5-19 days (ave. 11.8 days); fourth stage larva 7-37 days (ave. 19.9 days); pupa 7-32 days (ave. 15.2 days). The life expectancy of adults ranged from 4 to 15 days (ave. 8.6 days). The entire egg to adult period ranged from 36 to 74 days (ave. 54.6 days). On average, each female oviposited 22.7 eggs; the average egg retention per female was 24.3 eggs.
Resumo:
The life cycle and reproductive patterns of Triatoma rubrofasciata were studied along with laboratory conditions for the establishment of a prolific colony. The insects were divided into four groups: two of them were maintained at room temperature (20.5°C to 33°C and 85% ± 5% of relative humidity), the other two in a climatic chamber (CC) (temperature: 29°C, humidity: 80% ± 5%). The groups were fed weekly or fortnightly on Swiss mice. The females from the group kept in the CC and fed weekly had longer life span, as well as a higher number of eggs, fertile eggs and hatchings; the group kept in the CC and fed fortnightly had a shorter life span for the 1st, 2nd and 3rd instars and a lower mortality rate for all instars. It was concluded that a constant high temperature (CC at 29°C) is the most suitable condition for the maintenance of a colony of T. rubrofasciata regardless of the interval between repasts.
Resumo:
The life cycle of Clerada apicicornis was determined under laboratory conditions. Mean development times in days were: egg 27.2, nymph I 12.5, nymph II 12, nymph III 13.4, nymph IV 16.4, nymph V 26. The life expectancy of adults ranged from 117 to 317 days (mean 196 days). Based on a cohort of 29 females of C. apicicornis, a horizontal life table was constructed. The following predictive parameters were obtained: net rate of reproduction (Ro = 48.31), intrinsic rate of population increase (r m = 0.153), generation time (Tc = 28.20 weeks), and finite rate of population increment (lambda = 1.16). The reproductive value (Vx) for each age class of the cohort females was calculated. The following observed parameters were calculated after mortality in each stage: net rate of reproduction (R'o=13.4), intrinsic rate of population increase (r c' =0.09 ), and finite rate of population increment (lambda' =1.1). The generation time (Tc' =27.4) was estimated using the methods of Laughlin and Bengstron. A vertical life table was elaborated and mortality was described for one generation of the cohort.