908 resultados para Produced Water
Resumo:
Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were observed in spring or summer and lowest in autumn. DMS or DMSPp distribution patterns were associated with water mass on a large geographical scale, while biological and chemical factors were more likely influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abundance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations: positive when nitrate concentration was lower than 1 mumol/L, and negative when it was above. Anthropogenic factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.
Resumo:
The objective of this thesis was to improve the dissolution rate of the poorly waters-soluble drug, fenofibrate by processing it with a high surface area carrier, mesoporous silica. The subsequent properties of the drug – silica composite were studied in terms of drug distribution within the silica matrix, solid state and release properties. Prior to commencing any experimental work, the properties of unprocessed mesoporous silica and fenofibrate were characterised (chapter 3), this allowed for comparison with the processed samples studied in later chapters. Fenofibrate was a highly stable, crystalline drug that did not adsorb moisture, even under long term accelerated storage conditions. It maintained its crystallinity even after SC-CO2 processing. Its dissolution rate was limited and dependent on the characteristics of the particular in vitro media studied. Mesoporous silica had a large surface area and mesopore volume and readily picked up moisture when stored under long term accelerated storage conditions (75% RH, 40 oC). It maintained its mesopore character after SC-CO2 processing. A variety of methods were employed to process fenofibrate with mesoporous silica including physical mixing, melt method, solvent impregnation and novel methods such as liquid and supercritical carbon dioxide (SC-CO2) (chapter 4). It was found that it was important to break down the fenofibrate particulate structure to a molecular state to enable drug molecules enter into the silica mesopores. While all processing methods led to some increase in fenofibrate release properties; the impregnation, liquid and SC-CO2 methods produced the most rapid release rates. SC-CO2 processing was further studied with a view to optimising the processing parameters to achieve the highest drug-loading efficiency possible (chapter 5). In this thesis, it was that SC-CO2 processing pressure had a bearing on drug-loading efficiency. Neither pressure, duration or depressurisation rate affected drug solid state or release properties. The amount of drug that could be loaded onto to the mesoporous silica successfully was also investigated at different ratios of drug mass to silica surface area under constant SC-CO2 conditions; as the drug – silica ratio increased, the drug-loading efficiency decreased, while there was no effect on drug solid state or release properties. The influence of the number of drug-loading steps was investigated (chapter 6) with a view to increasing the drug-loading efficiency. This multiple step approach did not yield an increase in drug-loading efficiency compared to the single step approach. It was also an objective in this chapter to understand how much drug could be loaded into silica mesopores; a method based on the known volume of the mesopores and true density of drug was investigated. However, this approach led to serious repercussions in terms of the subsequent solid state nature of the drug and its release performance; there was significant drug crystallinity and reduced release extent. The impact of in vitro release media on fenofibrate release was also studied (chapter 6). Here it was seen that media containing HCl led to reduced drug release over time compared to equivalent media not containing HCl. The key findings of this thesis are discussed in chapter 7 and included: 1. Drug – silica processing method strongly influenced drug distribution within the silica matrix, drug solid state and release. 2. The silica surface area and mesopore volume also influenced how much drug could be loaded. It was shown that SC-CO2 processing variables such as processing pressure (13.79 – 41.37 MPa), duration time (4 – 24 h) and depressurisation rate (rapid or controlled) did not influence the drug distribution within the SBA- 15 matrix, drug solid state form or release. Possible avenues of research to be considered going forward include the development and application of high resolution imaging techniques to visualise drug molecules within the silica mesopores. Also, the issues surrounding SBA-15 usage in a pharmaceutical manufacturing environment should be addressed.
Resumo:
Despite occasional trips to the ground and feeding in trees whose canopies touched the river, mantled howling monkeys were never seen to drink from any ground water. Drinking from arboreal cisterns was observed, but only during the wet season (meteorologically the less stressful season but phenologically the more stressful season). The lack of sufficient new leaves during the wet season forced the howlers to ingest more mature leaves which contained significantly less water. To compensate for the lowered amount of water in their food, the monkeys utilized arboreal water cisterns. The cisterns dried up during the dry season, but the howlers maintained their water balance by altering their time of actiivity and selecting a diet comprised largely of succulent new leaves. The effect of plant-produced secondary compounds on drinking also was discussed.
Resumo:
The valuation of ecosystem services such as drinking water provision is of growing national and international interest. The cost of drinking water provision is directly linked to the quality of its raw water input, which is itself affected by upstream land use patterns. This analysis employs the benefit transfer method to quantify the economic benefits of water quality improvements for drinking water production in the Neuse River Basin in North Carolina. Two benefit transfer approaches, value transfer and function transfer, are implemented by combining the results of four previously published studies with data collected from eight Neuse Basin water treatment plants. The mean net present value of the cost reduction estimates for the entire Neuse Basin ranged from $2.7 million to $16.6 million for a 30% improvement in water quality over a 30-year period. The value-transfer approach tended to produce larger expected benefits than the function-transfer approach, but both approaches produced similar results despite the differences in their methodologies, time frames, study sites, and assumptions. © 2010 ASCE.
Resumo:
The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal.
Resumo:
AIMS: The aim of this study was to evaluate biosurfactant production by a novel marine Rhodococcus sp., strain PML026 and characterize the chemical nature and properties of the biosurfactant. METHODS AND RESULTS: A novel marine bacterium (Rhodococcus species; strain PML026) was shown to produce biosurfactant in the presence of hydrophobic substrate (sunflower oil). Biosurfactant production (identified as a trehalolipid) was monitored in whole-batch cultures (oil layer and aqueous phase), aqueous phase (no oil layer) and filtered (0·2mum) aqueous phase (no oil or cells; extracellular) and was shown to be closely associated with growth/biomass production. Extracellular trehalolipid levels increased postonset of stationary growth phase. Purified trehalolipid was able to reduce the surface tension of water to 29mN m(-1) at Critical Micellar Concentration (CMC) of c. 250mgl(-1) and produced emulsions that were stable to a wide range of conditions (pH 2-10, temperatures of 20-100°C and NaCl concentrations of 5-25% w/v). Separate chemical analyses of the intact trehalolipid and its constituents demonstrated the compound was in fact a mixture of homologues (>1180MW) consisting of a trehalose moiety esterified to a series of straight chain and hydroxylated fatty acids. CONCLUSIONS: The trehalolipid biosurfactant produced by the novel marine strain Rhodococcus sp. PML026 was characterized and exhibited high surfactant activity under a wide range of conditions. SIGNIFICANCE AND IMPACT OF STUDY: Strain PML026 of Rhodococcus sp. is a potential candidate for bioremediation or biosurfactant production for various applications.
Disturbance to conserved bacterial communities in the cold water gorgonian coral Eunicella verrucosa
Resumo:
The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.
Resumo:
The present work emphasizes the importance of including a full quantitative analysis when in situ operando methods are used to investigate reaction mechanisms and reaction intermediates. The fact that some surface species exchange at a similar rate to the reaction product during isotopic transients is a necessary but not sufficient criterion for participation as a key reaction intermediate. This is exemplified here in the case of highly active low-temperature water-gas shift (WGS) catalysts based on gold and platinum. Operando DRIFTS data, isotopic exchanges, and DRIFTS calibration curves relating the concentration of formate species to the corresponding DRIFTS band intensity were combined to obtain a quantitative measure of the specific rate of formate decomposition. Despite displaying a rapid isotopic exchange rate (sometimes as fast as that of the reaction product CO2), the concentration of formates seen by DRIFTS was found to account for at most only 10% of the CO2 produced under the experimental conditions reported herein. These new results obtained on Au/CeZrO4 and Pt/CeO2 preparations (which are among the most active low-temperature WGS catalysts reported to date), led to the same conclusions regarding the minor role of IR-observable formates as those obtained in the case of less active Au/Ce(La)O-2 and Pt/ZrO2 catalysts. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
A techno-economic model of an autonomous wave-powered desalination plant is developed and indicates that fresh water can be produced for as little as £0.45/m3. The advantages of an autonomous wave-powered desalination plant are also discussed indicating that the real value of the system is enhanced due to its flexibility for deployment and reduced environmental impact. The modelled plant consists of the Oyster wave energy converter, conventional reverse osmosis membranes and a pressure exchanger–intensifier for energy recovery. A time-domain model of the plant is produced using wave-tank experimentation to calibrate the model of Oyster, manufacturer's data for the model of the reverse osmosis membranes and a hydraulic model of the pressure exchanger–intensifier. The economic model of the plant uses best-estimate cost data which are reduced to annualised costs to facilitate the calculation of the cost of water. Finally, the barriers to the deployment of this technology are discussed, but they are not considered insurmountable.
Resumo:
Using density functional theory (DFT) and kinetic analyses, a new carboxyl mechanism for the water-gas-shift reaction (WGSR) on Au/CeO2(111) is proposed. Many elementary steps in the WGSR are studied using an Au cluster supported on CeO2(111). It is found that (i) water can readily dissociate at the interface between Au and CeO2; (ii) CO2 can be produced via two steps: adsorbed CO on the Au cluster reacts with active OH on ceria to form the carboxyl (COOH) species and then COOH reacts with OH to release CO2; and (iii) two adsorbed H atoms recombine to form molecular H-2 on the Au cluster. Our kinetic analyses show that the turnover frequency of the carboxyl mechanism is consistent with the experimental one while the rates of redox and formate mechanisms are much slower than that of carboxyl mechanism. It is suggested that the carboxyl pathway is likely to be responsible for WGSR on Au/CeO2.
Resumo:
This study investigates the production of organic fertilizer using Anaerobic Digestate (as a nutrient source) and limestone powder as the raw materials. A two-level factorial experimental design was used to determine the influence of process variables on the nutrient homogeneity within the granules. Increasing the liquid-to-solid ratio during granulation resulted in increased granule nutrient homogeneity. Increasing the processing time and the impeller speed were also found to increase the nutrient homogeneity. In terms of nutrients release into deionized water, the granules effectively released both potassium and phosphate into solution. © 2012 Elsevier Ltd.
Resumo:
As increasing incidences in the occurrence of cylindrospermopsin (CYN) appear, in addition to further research on its toxicological nature, improved rapid methods to detect this toxin are required. Antibody based assays are renowned for their ability to provide rapid, portable, simple to use tests. As yet however there are no publications outlining how an antibody to CYN can be produced. A range of chemical approaches was investigated to synthesise CYN immunogens for antibody production but failed to generate a response. Finally, a modified Mannich reaction for immunogen synthesis was employed to couple the toxin to two carrier proteins. Both protein conjugates were successfully used to raise both polyclonal and monoclonal antibodies of high sensitivity to CYN. These antibodies were characterised employing competitive indirect ELISA and an optical biosensor assay. By ELISA the sensitivity achieved ranged from 27 to 131. pg/mL and by SPR 4.4 to 11.1. ng/mL thus demonstrating that the selection of immunoassay platform is important for the detection level required by the end user for their application. Low cross-reactivity to the much less toxic metabolite deoxyCYN was observed. This is the first reported production of antibodies to this toxin. © 2013 Elsevier B.V.
Resumo:
A wide variety of processes make use of plain orifice nozzles. Fuel injectors for internal combustion engines incorporate these nozzles to generate finely atomized sprays. Processes such as jet cutting, jet cleaning, and hydroentanglement, on the other hand, use similar nozzles, but require coherent jets. The spray or jet characteristics depend on the stability of the flow emerging from the orifice. This problem has been extensively researched for nozzles with diameters above 300 μm. Much less is known about the characteristics of jets produced by nozzles with smaller diameters, where viscous effects and small geometric variations due to manufacturing tolerances are likely to play an increasing role. Results are presented of a wide-ranging investigation of geometry effects on the flow parameters and jet characteristics of nozzles with diameters between 120 and 170 μm. Nozzles with circular cross-section and conical, cone-capillary and capillary axial designs were investigated. For conical and cone-capillary nozzles, the effect of cone angle and effects due to interactions between adjacent nozzles in the multi-hole cone-capillary nozzles were studied. For capillary nozzles, the effects of diameter variations and inlet edge roundness for capillary nozzles were considered. Furthermore, the effect of varying the aspect ratio (ratio of major and minor axes) of elliptical nozzles was studied. Flowrate and jet impact force measurements were carried out to determine the discharge coefficient C, velocity coefficient C, and contraction coefficient C of the nozzles for supply pressures between 3 and 12 MPa. Visualizations of the jet flow were carried out in the vicinity of the nozzle exit in order to identify near-nozzle flow regimes and to study jet coherence. The relationship between nozzle geometry, discharge characteristics, and jet coherence is examined. © IMechE 2006.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.