937 resultados para Process control -- Statistical methods
Resumo:
Recent studies have shown that adaptive X control charts are quicker than traditional X charts in detecting small to moderate shifts in a process. In this article, we propose a joint statistical design of adaptive X and R charts having all design parameters varying adaptively. The process is subjected to two independent assignable causes. One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. It is assumed that the quality characteristic is normally distributed and the time that the process remains in control has exponential distribution. Performance measures of these adaptive control charts are obtained through a Markov chain approach. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
INTRODUCTION: Visual analysis is widely used to interpret regional cerebral blood flow (rCBF) SPECT images in clinical practice despite its limitations. Automated methods are employed to investigate between-group rCBF differences in research Studies but have rarely been explored in individual analyses.OBJECTIVES: To compare visual inspection by nuclear physicians with the automated statistical parametric mapping program using a SPECT dataset of patients with neurological disorders and normal control images.METHODS: Using statistical parametric mapping, 14 SPECT images from patients with various neurological disorders were compared individually with a databank of 32 normal images using a statistical threshold of p<0.05 (corrected for multiple comparisons at the level of individual voxels or clusters). Statistical parametric mapping results were compared with Visual analyses by a nuclear physician highly experienced in neurology (A) as well as a nuclear physician with a general background of experience (B) who independently classified images as normal or altered, and determined the location of changes and the severity.RESULTS: of the 32 images of the normal databank, 4 generated maps showing rCBF abnormalities (p<0.05, corrected). Among the 14 images from patients with neurological disorders, 13 showed rCBF alterations. Statistical parametric mapping and physician A completely agreed on 84.37% and 64.28% of cases from the normal databank and neurological disorders, respectively. The agreement between statistical parametric mapping and ratings of physician B were lower (71.18% and 35.71%, respectively).CONCLUSION: Statistical parametric mapping replicated the findings described by the more experienced nuclear physician. This finding suggests that automated methods for individually analyzing rCBF SPECT images may be a valuable resource to complement visual inspection in clinical practice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.
Resumo:
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. Copyright © 2006 by ABCM.
Resumo:
Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The mechanical harvesting is an important stage in the production process of soybeans and, in this process; the loss of a significant number of grains is common. Despite the existence of mechanisms to monitor these losses, it is still essential to use sampling methods to quantify them. Assuming that the size of the sample area affects the reliability and variability between samples in quantifying losses, this paper aimed to analyze the variability and feasibility of using different sizes of sample area (1, 2 and 3 m²) in quantifying losses in the mechanical harvesting of soybeans. Were sampled 36 sites and the cutting losses, losses by other mechanisms of the combine and total losses were evaluated, as well as the water content in seeds, straw distribution and crop productivity. Data were subjected to statistical analysis (descriptive statistics and analysis of variance) and Statistical Control Process (SCP). The coefficients of variation were similar for the three frames available. Combine losses showed stable behavior, whereas cutting losses and total losses showed unstable behavior. The frame size did not affect the quantification and variability of losses in the mechanical harvesting of soybeans, thus a frame of 1 m² can be used for determining losses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia de Produção - FEB