969 resultados para Problem Situation
Resumo:
Cultural theory breaks with Modern analysis by rejecting traditional notions of race, gender, class and sexuality. In doing so, alternative frameworks such as Post-Feminism emerge which are useful for thinking about culture, technology and what our interactions with it mean. From a Post-Feminist perspective it can be seen how in our multi-cultural, post-industrial, digitized world, there is space to move beyond traditional ways of dividing up society such as ‘male’ and ‘female’. We are then free to re-construct our identity in light of a rich diversity of individually relevant experiences. Therefore, in order to get a better understanding of the highly nuanced cultural interactions that characterize our use of technology, this paper argues against using the inherently stereotyped lens of gender and allowing a new set of user needs to emerge.
Resumo:
The track allocation problem (TAP) at a multi-track, multi-platform mainline railway station is defined by the station track layout and service timetable, which implies combinations of spatial and temporal conflicts. Feasible solutions are available from either traditional planning or advanced intelligent searching methods and their evaluations with respect to operational requirements are essential for the operators. To facilitate thorough analysis, a timed Coloured Petri Nets (CPN) model is presented here to encapsulate the inter-relationships of the spatial and temporal constraints in the TAP.
Resumo:
OBJECTIVE To examine the psychometric properties of a Chinese version of the Problem Areas In Diabetes (PAID-C) scale. RESEARCH DESIGN AND METHODS The reliability and validity of the PAID-C were evaluated in a convenience sample of 205 outpatients with type 2 diabetes. Confirmatory factor analysis, Bland-Altman analysis, and Spearman's correlations facilitated the psychometric evaluation. RESULTS Confirmatory factor analysis confirmed a one-factor structure of the PAID-C (χ2/df ratio = 1.894, goodness-of-fit index = 0.901, comparative fit index = 0.905, root mean square error of approximation = 0.066). The PAID-C was associated with A1C (rs = 0.15; P < 0.05) and diabetes self-care behaviors in general diet (rs = −0.17; P < 0.05) and exercise (rs = −0.17; P < 0.05). The 4-week test-retest reliability demonstrated satisfactory stability (rs = 0.83; P < 0.01). CONCLUSIONS The PAID-C is a reliable and valid measure to determine diabetes-related emotional distress in Chinese people with type 2 diabetes.
Resumo:
This article focuses on airborne engineered nanoparticles generated in a growing number of commercial and research facilities. Despite their presence in the air of many such facilities, there are currently no established and validated measurement methods to detect them, characterise their properties or quantify their concentrations. In relation to their possible health impacts, the key questions include: (i) Are the particles in the nano-size range are more toxic than larger particles of the same material? (ii) Does the surface chemistry of the lung alters the toxicity of inhaled nanoparticles? (iii) Do nano-fibers pose the same risk as asbestos? and (iv) Are the methods for assessing the health risk are appropriate? This article summarises the state of knowledge in relation to these issues.
Resumo:
Lack of a universally accepted and comprehensive taxonomy of cybercrime seriously impedes international efforts to accurately identify, report and monitor cybercrime trends. There is, not surprisingly, a corresponding disconnect internationally on the cybercrime legislation front, a much more serious problem and one which the International Telecommunication Union (ITU) says requires „the urgent attention of all nations‟. Yet, and despite the existence of the Council of Europe Convention on Cybercrime, a proposal for a global cybercrime treaty was rejected by the United Nations (UN) as recently as April 2010. This paper presents a refined and comprehensive taxonomy of cybercrime and demonstrates its utility for widespread use. It analyses how the USA, the UK, Australia and the UAE align with the CoE Convention and finds that more needs to be done to achieve conformance. We conclude with an analysis of the approaches used in Australia, in Queensland, and in the UAE, in Abu Dhabi, to fight cybercrime and identify a number of shared problems.
Resumo:
Plenary Session: "New Voices in Children's Literature"
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.
Resumo:
Symptoms of barley yellow dwarf (BYD) have been observed on cereals in nearly all countries of West Asia and North Africa. Its incidence. however, has varied during the last 15 years. Observations from field surveys are summarized. Since symptoms of barley yellow dwarf virus (BYDV) are of low diagnostic value, especially in wheat (Triticum aestivum L.), more precise qualitative and quantitative detection was derived by vector transmission and serology. In 1985 and 1986. preliminary surveys by enzyme-linked immunosorbent assay (ELlS A) indicated that BYDV incidence in the regions surveyed in Syria, Morocco, and Tunisia was around 7. 22. and 24%. respectively. By vector transmission PAV-, RPV-, and RMV-like isolates ofBYDV were identified in Morocco and the PAV-like isolate in Syria. By serology PAV-like isolates were identified in Ethiopia, Lebanon. Morocco. Syria. and Tunisia. and MA V-like isolates were identified from Morocco and Tunisia. The PAV-like type was the most common in all countries surveyed. Screening for BYDV resistance by natural infection has been carried out in a number of countries of the region during the last few years. Screening for resistance by aphid inoculation was initiated in Syria in 1986 at the International Center for Agricultural Research in the Dry Areas (ICARDA). Such screening is expected to follow in other countries of the region soon.
Resumo:
Early childhood teacher education programs have a responsibility, amongst many, to prepare teachers for decision-making on real world issues, such as child abuse and neglect. Their repertoire of skills can be enhanced by engaging with others, either face-to-face or online, in authentic problem-based learning. This paper draws on a study of early childhood student teachers who engaged in an authentic learning experience, which was to consider and to suggest how they would act upon a real-life case of child abuse encountered in an early childhood classroom in Queensland. This was the case of Toby (a pseudonym), who was suspected of being physically abused at home. Students drew upon relevant legislation, policy and resource materials to tackle Toby’s case. The paper provides evidence of students grappling with the complexity of a child abuse case and establishing, through collaboration with others, a proactive course of action. The paper has a dual focus. First, it discusses the pedagogical context in which early childhood student teachers deal with issues of child abuse and neglect in the course of their teacher education program. Second, it examines evidence of students engaging in collaborative problem-solving around issues of child abuse and neglect and teachers’ responsibilities, both legal and professional, to the children and families they work with. Early childhood policy-makers, practitioners and teacher educators are challenged to consider how early childhood teachers are best equipped to deal with child protection and early intervention.
Resumo:
If the trade union movement is to remain an influential force in the industrial, economic and socio/political arenas of industrialised nations it is vital that its recruitment of young members improve dramatically. Australian union membership levels have declined markedly over the last three decades and youth union membership levels have decreased more than any age group. Currently around 10% of young workers aged between 16-24 years are members of unions in Australia compared to 26% of workers aged 45-58 (Oliver, 2008). This decline has occurred throughout the union movement, in all states and in almost all industries and occupations. This research, which consists of interviews with union organisers and union officials, draws on perspectives from the labour geography literature to explore how union personnel located in various places, spaces and scales construct the issue of declining youth union membership. It explores the scale of connections within the labour movement and the extent to which these connections are leveraged to address the problem of youth union membership decline. To offer the reader a sense of context and perspective, the thesis firstly outlines the historical development of the union movement. It also reviews the literature on youth membership decline. Labour geography offers a rich and apposite analytical tool for investigation of this area. The notion of ‘scale’ as a dynamic, interactive, constructed and reconstructed entity (Ellem, 2006) is an appropriate lens for viewing youth-union membership issues. In this non-linear view, scale is a relational element which interplays with space, place and the environment (Howett, in Marston, 2000) rather than being ‘sequential’ and hierarchical. Importantly, the thesis investigates the notion of unions as ‘spaces of dependence’ (Cox, 1998a, p.2), organisations whose space is centred upon realising essential interests. It also considers the quality of unions’ interactions with others – their ‘spaces of engagement‘(Cox, 1998a, p.2), and the impact that this has upon their ability to recruit youth. The findings reveal that most respondents across the spectrum of the union movement attribute the decline in youth membership levels to factors external to the movement itself, such as changes to industrial relations legislation and the impact of globalisation on employment markets. However, participants also attribute responsibility for declining membership levels to the union movement itself, citing factors such as a lack of resourcing and a need to change unions’ perceived identity and methods of operation. The research further determined that networks of connections across the union movement are tenuous and, to date, are not being fully utilised to assist unions to overcome the youth recruitment dilemma. The study concludes that potential connections between unions are hampered by poor resourcing, workload issues and some deeply entrenched attitudes related to unions ‘defending (and maintaining) their patch’.
Resumo:
The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.
Decoupled trajectory planning for a submerged rigid body subject to dissipative and potential forces
Resumo:
This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.
Resumo:
This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.