993 resultados para Primary iron overload
(Table 1) Primary and secondary mineral analyses of serpentinized peridotites from ODP Hole 109-670A
Resumo:
We investigated the responses of the ecologically dominant Antarctic phytoplankton species Phaeocystis antarctica (a prymnesiophyte) and Fragilariopsis cylindrus (a diatom) to a clustered matrix of three global change variables (CO2, mixed-layer depth, and temperature) under both iron (Fe)-replete and Fe-limited conditions based roughly on the Intergovernmental Panel on Climate Change (IPCC) A2 scenario: (1) Current conditions, 39 Pa (380 ppmv) CO2, 50 µmol photons/m**2/s light, and 2°C; (2) Year 2060, 61 Pa (600 ppmv) CO2, 100 µmol photons/m**2/s light, and 4°C; (3) Year 2100, 81 Pa (800 ppmv) CO2, 150 µmol photons/m**2/s light, and 6°C. The combined interactive effects of these global change variables and changing Fe availability on growth, primary production, and cell morphology are species specific. A competition experiment suggested that future conditions could lead to a shift away from P. antarctica and toward diatoms such as F. cylindrus. Along with decreases in diatom cell size and shifts from prymnesiophyte colonies to single cells under the future scenario, this could potentially lead to decreased carbon export to the deep ocean. Fe : C uptake ratios of both species increased under future conditions, suggesting phytoplankton of the Southern Ocean will increase their Fe requirements relative to carbon fixation. The interactive effects of Fe, light, CO2, and temperature on Antarctic phytoplankton need to be considered when predicting the future responses of biology and biogeochemistry in this region.
Resumo:
This paper sheds light on the iron and steel (IS) scrap trade to examine how economic development affects the quality demanded of recyclable resource. A simple model is presented that show a mechanism of how scrap quality impacts the direction of trade due to comparative advantage. We find that economic development in both importing and exporting countries has a positive effect on the quality of traded recyclables. Developed countries that intend to improve the domestic recovery of recyclables should raise the quality of separating recyclables while developing countries should tighten environmental regulations to help decrease the import of recyclables that cause pollution.
Resumo:
Mycobacterium tuberculosis, the primary agent of tuberculosis, must acquire iron from the host to cause infection. To do so, it releases high-affinity iron-binding siderophores called exochelins. Exochelins are thought to transfer iron to another type of high-affinity iron-binding molecule in the bacterial cell wall, mycobactins, for subsequent utilization by the bacterium. In this paper, we describe the purification of exochelins of M. tuberculosis and their characterization by mass spectrometry. Exochelins comprise a family of molecules whose most abundant species range in mass from 744 to 800 Da in the neutral Fe(3+)-loaded state. The molecules form two 14-Da-increment series, one saturated and the other unsaturated, with the increments reflecting different numbers of CH2 groups on a side chain. These series further subdivide into serine- or threonine-containing species. The virulent M. tuberculosis Erdman strain and the avirulent M. tuberculosis H37Ra strain produce a similar set of exochelins. Based on a comparison of their tandem mass spectra, exochelins share a common core structure with mycobactins. However, exochelins are smaller than mycobactins due to a shorter alkyl side chain, and the side chain of exochelins terminates in a methyl ester. These differences render exochelins more polar than the lipophilic mycobactins and hence soluble in the aqueous extracellular milieu of the bacterium in which they bind iron in the host.
Resumo:
Flash-induced voltage changes (electrogenic events) in photosystem I particles from spinach, oriented in a phospholipid layer, have been studied at room temperature on a time scale ranging from 1 micros to several seconds. A phospholipid layer containing photosystem I particles was adsorbed to a Teflon film separating two aqueous compartments. Voltage changes were measured across electrodes immersed in the compartments. In the absence of added electron donors and acceptors, a multiphasic voltage increase, associated with charge separation, was followed by a decrease, associated with charge recombination. Several kinetic phases were resolved: a rapid (<1 micros) increase, ascribed to electron transfer from the primary electron donor P700 to the iron-sulfur electron acceptor FB, was followed by a slower, biphasic increase with time constants of 30 and 200 micros. The 30-micros phase is assigned to electron transfer from FB to the iron-sulfur center FA. The voltage decrease had a time constant of 90 ms, ascribed to charge recombination from FA to P700. Upon chemical prereduction of FA and FB the 30- and 200-micros phases disappeared and the decay time constant was accelerated to 330 micros, assigned to charge recombination from the phylloquinone electron acceptor (A1) or the iron-sulfur center FX to P700.
Resumo:
A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km**2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to >0.40. Silicic acid (<2 µmol/L) limited diatoms, which contributed <10% of phytoplankton biomass. Copepods exerted high grazing pressure. This is the first study of particle flux out of an artificially fertilized bloom with very low diatom biomass. Net community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21 mmol POC/m**2/d, probably ±20%. 234Th profiles implied constant export of ~6.3 mmol POC/m**2/d in the patch, similar to unfertilized waters. The difference between NCP and 234Th-derived export partly accumulated in the mixed layer and was partly remineralized between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m inside and outside the patch caught mostly <1.1 mmol POC/m**2/d, predominantly of fecal origin; flux did not increase upon fertilization. Our data thus indicate intense flux attenuation between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but silicate-deficient waters are not poised for enhanced particle export upon iron addition.