1000 resultados para Price family.
Resumo:
Sun exposure is the main environmental risk factor for melanoma, but the timing of exposure during life that confers increased risk is controversial. Here we provide the first report of the association between lifetime and age-specific cumulative ultraviolet exposure and cutaneous melanoma in Queensland, Australia, an area of high solar radiation, and examine the association separately for families at high, intermediate and low familial melanoma risk. Subjects were a population-based sample of melanoma cases diagnosed and registered in Queensland between 1982 and 1990 and their relatives. The analysis included 1,263 cases and relatives with confirmed cutaneous melanoma and 3,111 first-degree relatives without melanoma as controls. Data an lifetime residence and sun exposure, family history and other melanoma risk factors were collected by a mailed questionnaire. Using conditional multiple logistic regression with stratification by family, cumulative sun exposure in childhood and in adulthood after age 20 was significantly associated with melanoma, with estimated relative risks of 1.15 per 5,000 minimal erythemal doses (MEDs) from age 5 to 12 years, and 1.52 per 5 MEDs/day from age 20. There was no association with sun exposure in families at high familial melanoma risk. History of nonmelanoma skin cancer (relative risk [RR] = 1.26) and multiple sunburns (RR = 1.31) were significant risk factors. These findings indicate that sun exposure in childhood and in adulthood are important determinants of melanoma but not in those rare families with high melanoma susceptibility, in which genetic factors are likely to be more important. (C) 2002 Wiley-Liss, Inc.
Resumo:
The reproductive structures of the downy-mildew fungi, Peronosclerospora noblei and Peronosclerospora eriochloae, develop only on chlorotic leaves of tall, vegetative tillers of the perennial grasses Sorghum leiocladum (wild sorghum) and Eriochloa pseudoacrotricha (early spring grass), respectively. They are never found on the leaves of flowering tillers, even when tillers of both types grow from the same tussock. The development of symptoms on infected tillers of both hosts and the morphological and anatomical changes to host tissues on infected tillers are detailed.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
Developed, piloted, and examined the psychometric properties of the Child and Adolescent Social and Adaptive Functioning Scale (CASAFS), a self-report measure designed to examine the social functioning of young people in the areas of school performance, peer relationships, family relationships, and home duties/self-care. The findings of confirmatory and exploratory factor analysis support a 4-factor solution consistent with the hypothesized domains. Fit indexes suggested that the 4-correlated factor model represented a satisfactory solution for the data, with the covariation between factors being satisfactorily explained by a single, higher order factor reflecting social and adaptive functioning in general. The internal consistency and 12-month test-retest reliability of the total scale was acceptable. A significant, negative correlation was found between the CASAFS and a measure of depressive symptoms, showing that high levels of social functioning are associated with low levels of depression. Significant differences in CASAFS total and subscale scores were found between clinically depressed adolescents and a matched sample of nonclinical controls. Adolescents who reported elevated but subclinical levels of depression also reported lower levels of social functioning in comparison to nonclinical controls.
Resumo:
Nedd4 belongs to a family of ubiquitin-protein ligases that is characterized by 2-4 WW domains, a carboxyl-terminal Hect ((h) under bar omologous to (E) under bar6-AP (C) under bar arboxyl (t) under bar erminus)-domain and in most cases an amino-terminal C2 domain. We had previously identified a series of proteins that associates with the WW domains of Nedd4. In this paper, we demonstrate that one of the Nedd4-binding proteins, N4WBP5, belongs to a small group of evolutionarily conserved proteins with three transmembrane domains. N4WBP5 binds Nedd4 WW domains via the two PPXY motifs present in the amino terminus of the protein. In addition to Nedd4, N4WBP5 can interact with the WW domains of a number of Nedd4 family members and is ubiquitinated. Endogenous N4WBP5 localizes to the Golgi complex. Ectopic expression of the protein disrupts the structure of the Golgi, suggesting that N4WBP5 forms part of a family of integral Golgi membrane proteins. Based on previous observations in yeast, we propose that N4WBP5 may act as an adaptor for Nedd4-like proteins and their putative targets to control ubiquitin-dependent protein sorting and trafficking.
Resumo:
Sperm ultrastructure is examined in representatives of five genera of the nudibranch gastropod family Chromodorididae: (Chromodoris, Hypselodoris, Glossodoris, Risbecia and Pectenodoris) and the results compared with previous work on other gastropods, especially other nudibranchs. As chromodoridid phylogeny is still incompletely understood, this study partly focuses on the search for new and as yet untapped sources of informative characters. Like spermatozoa of most other heterobranch gastropods, those of the Chromodorididae are elongate, complex cells composed of an acrosomal complex (small, rounded acrosomal vesicle, and columnar acrosomal pedestal), a condensed nucleus, sub-nuclear ring, a highly modified mid-piece (axoneme + coarse fibres surrounded by a glycogen-containing, helically-coiled mitochondrial derivative) and terminally a glycogen piece (or homologue thereof). The finely striated acrosomal pedestal is a synapomorphy of all genera examined here, but interestingly also occurs in at least one dorid (Rostanga arbutus). Substantial and potentially taxonomically informative differences were also observed between genera in the morphology of the nucleus, the neck region of the mid-piece, and also the terminal glycogen piece. The subnuclear ring is shown for the first time to be a segmented, rather than a continuous structure; similarly, the annular complex is shown to consist of two structures, the annulus proper and the herein-termed annular accessory body.