946 resultados para Prestressed concrete construction.
Resumo:
In fibre reinforced polymer (FRP) prestressed concrete applications, an FRP tendon must sustain high axial tensile stresses and, if cracks occur, additional dowel forces. The tendon may also be exposed to solutions and so the combined axial-shear stress performance after long-term environmental exposure is important. Experiments were conducted to investigate the combined axial-shear stress failure envelope for unidirectional carbon FRP tendons which had been exposed to either water, salt water or concrete pore solution at 60 °C for approximately 18 months. The underlying load resisting mechanisms were found to depend on the loading configuration, restraint effects and the initial stress state. When saturated, CFRP tendons are likely to exhibit a reduced shear stiffness. However, the ultimate limit state appeared to be fibre-dominated and was therefore less susceptible to reductions due to solution uptake effects. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the case history of a damaged one-span prestressed concrete bridge on a crucial artery near the city of Cagliari (Sardinia), along the sea-side. After being involved in a disastrous flood, attention has arisen on the worrying safety state of the deck, submitted to an intense daily traffic load. Evident signs of this severe condition were the deterioration of the beams concrete and the corrosion, the lack of tension and even the rupture of the prestressing cables. After performing a limited in situ test campaign, consisting of sclerometer, pull out and carbonation depth tests, a first evaluation of the safety of the structure was performed. After collecting the data of dynamic and static load tests as well, a comprehensive analysis have been carried out, also by means of a properly calibrated F.E. model. Finally the retrofitting design is presented, consisting of the reparation and thickening of the concrete cover, providing flexural and shear FRP external reinforcements and an external prestressing system, capable of restoring a satisfactory bearing capacity, according to the current national codes. The intervention has been calibrated by the former F.E. model with respect to transversal effects and influence of local and overall deformation of reinforced elements. © 2012 Taylor & Francis Group.
Resumo:
A distributed optical fiber sensor based on Brillouin scattering (BOTDR or BOTDA) can measure and monitor strain and temperature generated along optical fiber. Because it can measure in real-time with high precision and stability, it is quite suitable for health monitoring of large-scale civil infrastructures. However, the main challenge of applying it to structural health monitoring is to ensure it is robust and can be repaired by adopting a suitable embedding method. In this paper, a novel method based on air-blowing and vacuum grouting techniques for embedding long-distance optical fiber sensors was developed. This method had no interference with normal concrete construction during its installation, and it could easily replace the long-distance embedded optical fiber sensor (LEOFS). Two stages of static loading tests were applied to investigate the performance of the LEOFS. The precision and the repeatability of the LEOFS were studied through an overloading test. The durability and the stability of the LEOFS were confirmed by a corrosion test. The strains of the LEOFS were used to evaluate the reinforcing effect of carbon fiber reinforced polymer and thereby the health state of the beams.
Resumo:
This paper describes the design, commissioning, and evaluation of a ?ber-optic strain sensor system for the structural health monitoring of a prestressed concrete posttensioned box girder railway bridge in Mumbai, India, which shows a number of well-documented structural problems. Preliminary laboratory trials to design the most appropriate sensor system that could be readily transported and used on site are described, followed by a description of load tests on the actual bridge undertaken in collaboration with Indian Railways and using locomotives of known weight. Results from the load tests using the optical system are compared with similar results obtained using electrical resistance strain gages. Conclusions are summarized concerning the integrity of the structure and for the future use of the sensor system for monitoring bridges of this type. Crack width measurements obtained during the load tests are also described.
Resumo:
An analytical model to predict strand slips within both transmission and anchorage lengths in pretensioned prestressed concrete members is presented. This model has been derived from an experimental research work by analysing the bond behavior and determining the transmission and anchorage lengths of seven-wire prestressing steel strands in different concrete mixes. A testing technique based on measuring the prestressing strand force in specimens with different embedment lengths has been used. The testing technique allows measurement of free end slip as well as indirect determination of the strand slip at different cross sections of a member without interfering with bond phenomena. The experimental results and the proposed model for strand slip distribution have been compared with theoretical predictions according to different equations in the literature and with experimental results obtained by other researchers. © 2013 Elsevier Ltd.
Resumo:
An experimental study on strengthening prestressed concrete (PC) hollow-core slabs was conducted. Nine PC hollow-core slabs were tested, including three unstrengthened reference slabs and six slabs strengthened with bamboo plates. The results show that compared with unreinforced slabs, the cracking loads of PC hollow-core slabs strengthened with bamboo plates increase by 5% to 96% (with an average of 41%), the loads at allowable deflection increase by 8% to 76% (with an average of 35%), and the ultimate loads increase by 83% to 184% (with an average of 123%), respectively. All the degrees of improvement in the crack load, allowable load and ultimate load increase with the increase in the thickness and width of the bamboo plates. With the increase in the loads, the strain distribution along the height of the strengthened slabs at the mid-span basically remains a plan-assumption. With the increase in the thickness and width of the bamboo plates, both the bamboo tensile strain on the tensile face and the concrete compressive strain on the compression face of the strengthened slabs decrease under the same load level.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia na Área de Especialização em Estruturas
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Relatório de Estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
O presente trabalho teve como objetivo o desenvolvimento de uma folha de cálculo em MS-Excel para cálculo de perdas de pré-esforço, utilizando rotinas programadas em Visual Basic. Neste relatório, após o capítulo introdutório onde são descritos os conceitos teóricos que sustentam o trabalho, descreve-se a aplicação desenvolvida e apresentam-se alguns exemplos de validação da mesma. A aplicação executa o cálculo das perdas de pré-esforço por pós-tensão e calcula a geometria do cabo, disponibilizando no final a representação gráfica das perdas para o cabo em estudo. Para além dos exemplos de validação referidos, são ainda apresentados os resultados obtidos por aplicação da folha de cálculo desenvolvida a uma situação real de projeto que surgiu durante a realização do estágio. A parte final do relatório é dedicada à apresentação das conclusões assim como a algumas sugestões para desenvolvimentos futuros.
Resumo:
O presente trabalho foi desenvolvido na obra do Aproveitamento Hidroelétrico de Foz Tua onde a autora teve oportunidade de realizar o estágio curricular junto da equipa da Fiscalização no período de 2 de Fevereiro de 2015 a 31 de Julho de 2015. A elaboração do presente trabalho pretende transmitir conhecimentos adquiridos relacionados com a constituição de um Aproveitamento Hidroelétrico, os tipos de barragens existentes, monitorização e controlo da segurança da estrutura da Barragem, controlo de qualidade de betão e o processo construtivo de uma Barragem. A construção da Barragem do Aproveitamento Hidroelétrico de Foz Tua tem sido realizada através do método tradicional, que consiste na aplicação de betão convencional compactado por vibração interna. Ao longo deste processo, foram aplicadas diversas técnicas construtivas, nomeadamente: escavação, betonagem, refrigeração artificial, injeção de juntas e tratamento de fundações. Neste trabalho foram ainda analisados os cuidados de segurança necessários neste tipo de estruturas, tendo como base o Regulamento de Segurança de Barragens. Este regulamento define as regras a seguir durante a execução da barragem e a monotorização que deve ser efetuada à mesma, permitindo assim o controlo da segurança da estrutura na sua construção e vida útil. É necessário ainda existir um controlo da qualidade, produção e aplicação do betão na estrutura de modo a aumentar a segurança, qualidade e durabilidade da mesma.
Resumo:
Moulton Hall, Chapman College, Orange, California, ca. 1975. Designed by Leason Pomeroy III & Associates of Orange, using a tilt-up concrete construction method. Completed in 1975, this 44,592 sq.ft. building is named in memory of an artist and patroness of the arts, Nellie Gail Moulton. Within this structure are the departments of Art, Communications, and Theatre/Dance as well as the Guggenheim Gallery and Waltmar Theatre. Waltmar Theatre was a gift from the late Walter and Margaret Schmid. The Guggenheim Gallery is used for the art exhibits presented by the art department and other departments on campus.