926 resultados para Power flow algorithm
Resumo:
Esta dissertação tem como objectivo explorar as potencialidades de aplicação do trânsito optimizado de energia (Optimal Power Flow - OPF), no contexto da operação e planeamento de redes de energia eléctrica. Para o efeito, são ilustradas diferentes funções objectivo, nomeadamente, a minimização: dos custos de combustível, da potência activa de perdas, da potência reactiva de perdas, do ajuste de carga, do ajuste da reactância das linhas e da inserção das reactâncias shunt e/ou baterias de condensadores. São ainda propostas duas abordagens, que recorrem ao OPF, para efectuar a resolução do problema da compensação do factor de potência, em redes de distribuição de energia eléctrica. Em cada abordagem, são inseridas baterias de condensadores comutáveis na rede, com o objectivo de conduzir a uma redução dos custos de geração de energia eléctrica. Na primeira abordagem, dimensionam-se as baterias de condensadores para o nível de carga mais elevado, enquanto na segunda abordagem proposta, o valor e localização dos condensadores, tem em conta o conjunto dos níveis de carga considerados para o qual se pretende efectuar o dimensionamento. As duas abordagens apresentam resultados distintos para a potência reactiva das baterias de condensadores adicionadas em cada barramento, bem como para a selecção dos escalões, que devem estar em funcionamento em diferentes níveis de carga. De forma a avaliar a qualidade das soluções efectua-se, uma avaliação técnico-económica para diferentes níveis admissíveis de compensação do factor de potência, tendo em conta cenários de carga considerados na óptica do planeamento. É proposta uma metodologia, com o objectivo de obter a solução do problema em função dos seguintes factores: orçamento disponível, nível de perdas considerado satisfatório, VAL e tan das cargas da rede. As abordagens propostas são aplicadas à rede de distribuição de energia eléctrica de São Vicente. São ainda efectuadas sensibilidades em relação à natureza da carga, mediante a variação da sua tan . Verifica-se que os resultados obtidos são robustos e que a segunda abordagem é mais vantajosa.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.
Resumo:
Voltage source multilevel power converter structures are being considered for high power high voltage applications where they have well known advantages. Recently, full back-to-back connected multilevel neutral diode clamped converters (NPC) have been used in high voltage direct current (HVDC) transmission systems. Bipolar back-to-back connection of NPCs have advantages in long distance HVDC transmission systems, but highly increased difficulties to balance the dc capacitor voltage dividers on both sending and receiving end NPCs. This paper proposes a fast optimum-predictive controller to balance the dc capacitor voltages and to control the power flow in a long distance HVDCsystem using bipolar back-to-back connected NPCs. For both converter sides, the control strategy considers active and reactive power to establish ac grid currents on sending and receiving ends, while guaranteeing the balancing of both NPC dc bus capacitor voltages. Furthermore, the fast predictivecontroller minimizes the semiconductor switching frequency to reduce global switching losses. The performance and robustness of the new fast predictive control strategy and the associated dc capacitors voltage balancing are evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
Locational Marginal Prices (LMP) are important pricing signals for the participants of competitive electricity markets, as the effects of transmission losses and binding constraints are embedded in LMPs [1],[2]. This paper presents a software tool that evaluates the nodal marginal prices considering losses and congestion. The initial dispatch is based on all the electricity transactions negotiated in the pool and in bilateral contracts. It must be checked if the proposed initial dispatch leads to congestion problems; if a congestion situation is detected, it must be solved. An AC power flow is used to verify if there are congestion situations in the initial dispatch. Whenever congestion situations are detected, they are solved and a feasible dispatch (re-dispatch) is obtained. After solving the congestion problems, the simulator evaluates LMP. The paper presents a case study based on the the 118 IEEE bus test network.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Os mercados de energia elétrica são atualmente uma realidade um pouco por todo o mundo. Contudo, não é consensual o modelo regulatório a utilizar, o que origina a utilização de diferentes modelos nos diversos países que deram início ao processo de liberalização e de reestruturação do sector elétrico. A esses países, dado que a energia elétrica não é um bem armazenável, pelo menos em grandes quantidades, colocam-se questões importantes relacionadas com a gestão propriamente dita do seu sistema elétrico. Essas questões implicam a adoção de regras impostas pelo regulador que permitam ultrapassar essas questões. Este trabalho apresenta um estudo feito aos mercados de energia elétrica existentes um pouco por todo o mundo e que o autor considerou serem os mais importantes. Foi também feito um estudo de ferramentas de otimização essencialmente baseado em meta-heurísticas aplicadas a problemas relacionados com a operação dos mercados e com os sistemas elétricos de energia, como é o exemplo da resolução do problema do Despacho Económico. Foi desenvolvida uma aplicação que simula o funcionamento de um mercado que atua com o modelo Pool Simétrico, em que são transmitidas as ofertas de venda e compra de energia elétrica por parte dos produtores, por um lado, e dos comercializadores, consumidores elegíveis ou intermediários financeiros, por outro, analisando a viabilidade técnica do Despacho Provisório. A análise da viabilidade técnica do Despacho Provisório é verificada através do modelo DC de trânsito de potências. No caso da inviabilidade do Despacho Provisório, por violação de restrições afetas ao problema, são determinadas medidas corretivas a esse despacho, com base nas ofertas realizadas e recorrendo a um Despacho Ótimo. Para a determinação do Despacho Ótimo recorreu-se à meta-heurística Algoritmos Genéticos. A aplicação foi desenvolvida no software MATLAB utilizando a ferramenta Graphical User Interfaces. A rede de teste utilizada foi a rede de 14 barramentos do Institute of Electrical and Electronics Engineers (IEEE). A aplicação mostra-se competente no que concerne à simulação de um mercado com tipo de funcionamento Pool Simétrico onde são efetuadas ofertas simples e onde as transações ocorrem no mercado diário, porém, não reflete o problema real relacionado a este tipo de mercados. Trata-se, portanto, de um simulador básico de um mercado de energia cujo modelo de funcionamento se baseia no tipo Pool Simétrico.
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.