928 resultados para Potassium chloride
Resumo:
The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.
Resumo:
This thesis is concerned with the use of ionic and neutral hydrogels in dermal and ocular applications with particular reference to controlled release applications. The work consists of three interconnected themes.The first area of study is the use of skin adhesive bioelectrode hydrogels as ground plate electrodes for ophthalmic iontophoresis applications. The work provides a basis of understanding the relative contributions made by ionic monomers (such as sodium s-(acrylamide)-2-methyl propane sulphonate and acrylic acid-bis-(3-sulfopropyl-ester, potassium salt) and neutral monomers (such as acryloymorpholine, N,N-dimethylacrylamide and N-vinyl pyrrolidone) to adhesion, rheology and impedance of bioelectrode gels. The general advantage of neutral monomers, which have been used to successfully replace ionic monomers, is that they enable more effective control of independent anion and cation species (for example potassium chloride and sodium chloride) unlike ionic monomers where polymerisation produces an immobile polyanion thus limiting cation mobility. Secondly, release from a completely neutral hydrogel under the influence of mechanical shaking was studied for the case of crosslinked polyvinyl alcohol (PVA) containing low concentration of linear soluble PVA in a contact lens application. The soluble PVA was observed to be eluting by reptation from the lens matrix due to the mechanical action of the eyelid. This process was studied in an in vitro model, which in this research was used as a basis for developing a lens made with enhanced release polymer. The third area of work is related to the factors that control drug release (in particular non-steroidal anti-inflammatory drugs) from a hydrogel matrix. This links both electrotherapy applications, such as transcutaneous electrical nerve stimulation, in which the passive diffusion from the gel could be used in conjunction with enhanced transmission across the dermal surface with passive diffusion from a contact lens matrix and the development of therapeutic contact lenses.
Resumo:
here is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.
Resumo:
There is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.
Resumo:
This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape. © 2008 American Institute of Physics.
Resumo:
Chapter 2 - Cystatin C is a cationic protein is not glycosylated, produced a steady state for all nucleated and present in biological fluids cells being freely filtered by the glomeruli and almost completely catabolized in the proximal tubule, it is a promising early renal dysfunction marker. This study aimed to determine and compare the serum concentration of cystatin C biomarker in 86 dogs. The animals were divided into four groups according to serum creatinine levels: G1 - up. 1.4 mg / dL (23 animals), G2 - 1.5-2.0 mg / dL (16 animals), G3 - 2.1 to 5.0 mg / dL (24 animals) and G4 - above 5.1 mg / dL (23 animals). There was the measurement of the parameters used in the clinical routine of small animals such as urea, urinary gamma glutamyl transferase, proteinuria, alkaline phosphatase, sodium, potassium, chloride, calcium, phosphorus, calcium/phosphorus ratio and cystatin C. There was no statistical difference for urea, proteinuria, phosphorus, calcium/phosphorus, potassium and cystatin C, however, the other showed no statistical difference. Based on the results we can infer that cystatin C was not a good early indicator of kidney disease in dogs. Chapter 3 - This study aimed to determine the hematological and urinalysis elements such as density, proteinuria, cylinders and pH in 86 dogs The animals were divided into four stages according to serum creatinine levels: I - up to 1.4 mg/dL (23 animals), II - 1.5-2.0 mg/dL (16 animals), III from 2.1 to 5.0 mg/dL (24 animals) and IV - above 5.1 mg/dL (23 animals). In stage III, IV there was anemia normocytic normochromic type. Stage II had a leukocytosis frame by neutrophilia with a regenerative left shift and stage III and IV detour degenerative left. The density remained within the reference values all stages. Proteinuria showed statistical significance for the classification 2+ (1.0 g/L), between stage I and II, II and IV. Only the cylinder granular statistical difference in the classification 2+ between stage II and III, and 3+ between stage I and III. The prevailing pH was acid. The haematological values compared to serum creatinine stages showed the changes in hemoglobin and packed cell volume erythrocytes become more pronounced as serum creatinine values rise , this is also the behavior of neutrophils rods and proteinuria.
Resumo:
The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.
The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.
ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.
Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.
Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.
Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.
Resumo:
Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.
Resumo:
Sodium is an essential nutrient with important functions in the organism, however, its ingestion in excess may cause various health problems such as arterial hypertension, brain diseases, heart failure and chronic renal failure. In this context, the present study proposes to prepare Minas Padrão cheese with different contents of sodium with the objective of evaluating the effect of the addition of potassium chloride in sensory characteristics and hysicochemical properties, as well as in the proximal composition and in microbiological quality. The cheeses were elaborate in concentrations of 100% of NaCl (C), 80% of NaCl + 20% of KCl (T1), 60% of NaCl + 40% of KCl (T2), 40% of NaCl + 60% of KCl (T3) and 20% of NaCl + 80% of KCl (T4) and stored for 20 days at 10 ºC. The proximal composition and physicochemical was based on the determination of moisture content, fat, protein, ash, chloride, sodium, potassium, titratable acidity and pH of all treatments after 20 days of storage. The microbiological quality of the samples was monitored through the count of Total Coliforms and Escherichia coli, Staphylococcus aureus, Salmonella spp., mold and yeast in the first and fifteenth day of storage. The sensorial characterization was performed by the technique of Free Profile choice. The results showed that the replacement of sodium chloride by potassium in the Minas Padrão cheese in concentration higher than 40% presented significantly higher moisture contents. Cheese with a reduction greater than 60% of sodium obtained significantly effect in the titratable acidity, presenting higher values compared to the other treatments. The cheese with 20% of salt replacement did not differ statistically in relation to the control. When the proportion of substituent was increased, a significant reduction of the sodium content of up to 73% was observed. As the sodium was replaced by potassium in cheese, the potassium content increased significantly, stablishing a reduction of 82% in relation to the control. There was no effect to sodium substitution by potassium in fat, protein, ash and chlorides, as well as the pH values. The microbiological results were in accordance with the current legislation, therefore suitable to be eaten. According to the Free Profile Choice technique it was observed that the control C cheese (100% of NaCl) showed results very close to the other treatments, differing only in flavor attributes. The replacement of sodium by potassium in proportions of 20% contributed to a bitter taste detected by the tasters. Whereas, the appearance, flavor and texture attributes showed no significant differences compared to the Minas Padrão cheese.
Resumo:
he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture
Resumo:
Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosteroneproducing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems. Extensive studies have been conducted to analyse the role that regulation of CYP11B2, the gene encoding the aldosterone synthase enzyme plays in determining aldosterone production and the development of hypertension. One significant regulatory factor that has only recently emerged is microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of enzymatic processes, that negatively regulate gene expression at the posttranscriptional level. Detection and manipulation of miRNA is now known to be a viable method in the treatment, prevention and prognosis of certain diseases. The aim of the present study was to identify miRNAs likely to have a role in the regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of APA and normal human adrenal tissue was compared, as was the H295R adrenocortical cell line model of adrenocortical function, under both basal conditions and following stimulation of aldosterone production. Key differentially-expressed miRNAs were then identified and bioinformatic tools used to identify likely mRNA targets and pathways for these miRNAs, several of which were investigated and validated using in vitro methods. The background to this study is set out in Chapter 1 of this thesis, followed by a description of the major technical methods employed in Chapter 2. Chapter 3 presents the first of the study results, analysing differences in miRNA profile between APA and normal human adrenal tissue. Microarray was implemented to detect the expression of miRNAs in these two tissue types and several miRNAs were found to vary significantly and consistently between them. Furthermore, members of several miRNA clusters exhibited similar changes in expression pattern between the two tissues e.g. members of cluster miR-29b-1 (miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c- 3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR- 134 and miR-382) are upregulated. Further bioinformatic analysis explored the possible biological function of these miRNAs using Ingenuity® Systems Pathway Analysis software. This led to the identification of validated mRNAs already known to be targeted by these miRNAs, as well as the prediction of other mRNAs that are likely targets and which are involved in processes relevant to APA pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis (CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR- 335-5p would reduce HMGCR and CYP11B2 expression. Chapter 4 describes the characterisation of H295R cells of different strains and sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed following application of 3 different stimulants: Angio II, dbcAMP and KCl. The most responsive strain to stimulation was Strain 1 at lower passage numbers. Furthermore, H295R proliferation increased following Angio II stimulation. In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p reduces HMGCR and CYP11B2 expression was tested using realtime quantitative RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were shown to downregulate CYP11B2 and HMGCR expression, thereby validating certain of the bioinformatic predictions generated in Chapter 3. The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, analysing how it changes under conditions that increase aldosterone secretion, including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a substitute for adrenocorticotropic hormone). miRNA profiling identified 7 miRNAs that are consistently downregulated by all three stimuli relative to basal cells: miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b- 5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a- 5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single polycistronic transcript. IPA bioinformatic analysis was again applied to identify experimentally validated and predicted mRNA targets of these miRNAs and the key biological pathways likely to be affected. This predicted several interactions between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p were found to be consistently downregulated by stimulation of aldosterone biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I was able to validate the downregulation of LDLR by miR-17 transfection, as predicted by IPA. In summary, this study identified key miRNAs that are differentially-expressed in vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. The many possible biological actions these miRNAs could have were filtered by bioinformatic analysis and selected interactions validated in vitro. While direct actions of these miRNAs on steroidogenic enzymes were identified, cholesterol handling also emerged as an important target and may represent a useful point of intervention in future therapies designed to modulate aldosterone biosynthesis and reduce its harmful effects.
Resumo:
Arthrospira platensis was cultivated in minitanks at 13 klux, using a mixture of KNO(3) and NH(4)Cl as nitrogen source. Fed-batch daily supply of NH(4)Cl at exponentially-increasing feeding rate allowed preventing ammonia toxicity and nitrogen deficiency, providing high maximum cell concentration (X(m)) and high-quality biomass (21.85 mg chlorophyll g cells(-1); 20.5% lipids; 49.8% proteins). A central composite design combined to response surface methodology was utilized to determine the relationships between responses (X(m), cell productivity and nitrogen-to-cell conversion factor) and independent variables (KNO(3) and NH(4)Cl concentrations). Under optimum conditions (15.5 mM KNO3; 14.1 mM NH(4)Cl), X(m) was 4327 mg L(-1), a value almost coincident with that obtained with only 25.4 mM KNO(3), but more than twice that obtained with 21.5 mM NH(4)Cl. A 30%-reduction of culture medium cost can be estimated when compared to KNO(3)-batch runs, thus behaving as a cheap alternative for the commercial production of this cyanobacterium. (C) 2010 Elsevier Ltd. All rights reserved.