983 resultados para Postural changes
Resumo:
Milk proteins are susceptible to chemical changes during processing and storage. We used proteomic tools to analyse bovine αS1-casein in UHT milk. 2-D gels of freshly processed milk αS1-casein was presented as five or more spots due to genetic polymorphism and variable phosphorylation. MS analysis after phosphopeptide enrichment allowed discrimination between phosphorylation states and genetic variants. We identified a new alternatively-spliced isoform with a deletion of exon 17, producing a new C-terminal sequence, K164SQVNSEGLHSYGL177, with a novel phosphorylation site at S174. Storage of UHT milk at elevated temperatures produced additional, more acidic αS1-casein spots on the gels and decreased the resolution of minor forms. MS analysis indicated that non-enzymatic deamidation and loss of the N-terminal dipeptide were the major contributors to the changing spot pattern. These results highlight the important role of storage temperature in the stability of milk proteins and the utility of proteomic techniques for analysis of proteins in food.
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.
Resumo:
Purpose Managers generally have discretion in determining how components of earnings are presented in financial statements in distinguishing between ‘normal’ earnings and items classified as unusual, special, significant, exceptional or abnormal. Prior research has found that such intra-period classificatory choice is used as a form of earnings management. Prior to 2001, Australian accounting standards mandated that unusually large items of revenue and expense be classified as ‘abnormal items’ for financial reporting, but this classification was removed from accounting standards from 2001. This move by the regulators was partly in response to concerns that the abnormal classification was being used opportunistically to manage reported pre-abnormal earnings. This study extends the earnings management literature by examining the reporting of abnormal items for evidence of intra-period classificatory earnings management in the unique Australian setting. Design/methodology/approach This study investigates associations between reporting of abnormal items and incentives in the form of analyst following and the earnings benchmarks of analysts’ forecasts, earnings levels, and earnings changes, for a sample of Australian top-500 firms for the seven-year period from 1994 to 2000. Findings The findings suggest there are systematic differences between firms reporting abnormal items and those with no abnormal items. Results show evidence that, on average, firms shifted expense items from pre-abnormal earnings to bottom line net income through reclassification as abnormal losses. Originality/value These findings suggest that the standard setters were justified in removing the ‘abnormal’ classification from the accounting standard. However, it cannot be assumed that all firms acted opportunistically in the classification of items as abnormal. With the removal of the standardised classification of items outside normal operations as ‘abnormal’, firms lost the opportunity to use such disclosures as a signalling device, with the consequential effect of limiting the scope of effectively communicating information about the nature of items presented in financial reports.
Resumo:
Changing sodium intake from 70-200 mmol/day elevates blood pressure in normotensive volunteers by 6/4 mmHg. Older people, people with reduced renal function on a low sodium diet and people with a family history of hypertension are more likely to show this effect. The rise in blood pressure was associated with a fall in plasma volume suggesting that plasma volume changes do not initiate hypertension. In normotensive individuals the most common abnormality in membrane sodium transport induced by an extra sodium load was an increased permeability of the red cell to sodium. Some normotensive individuals also had an increase in the level of a plasma inhibitor that inhibited Na-K ATPase. These individuals also appeared to have a rise in blood pressure. Sodium intake and blood pressure are related. The relationship differs in different people and is probably controlled by the genetically inherited capacity of systems involved in membrane sodium transport.
Resumo:
IR radiation has been studied for micro-organism inactivation of bacterial spores on metal substrates [1] and on metal and paper substrates [2]. A near-point near infrared laser water treatment apparatus for use in dental hand-pieces was also developed [3]. To date water sterilisation research using a mid-IR laser technique is very rare. According to the World Health Organisation [4], examinations for faecal indicator bacteria remain the most sensitive and specific way of assessing the hygienic quality of water. Bacteria that fall into this group are E. coli, other coliform bacteria (including E. cloacae) and to a lesser extent, faecal streptococci [5]. Protozoan cysts from organisms which cause giardiasis are the most frequently identified cause of waterborne diseases in developed countries [6,7]. The use of aerobic bacterial endospores to monitor the efficiency of various water treatments has been shown to provide a reliable and simple indicator of overall performance of water treatment[8,9].The efficacy of IR radiation for water disinfection compared to UV treatment has been further investigated in the present study. In addition FTIR spectroscopy in conjunction with Principle Component Analysis was used to characterise structural changes within the bacterial cells and endospores following IR laser treatment. Changes in carbohydrate content of E. cloacae following IR laser treatment were observed.
Resumo:
The increasing prevalence of childhood obesity is a global health issue. Past studies in Japan have reported an increase in both body mass index (BMI) and risk of obesity among children and adolescents. However, changes in body size and proportion in this population over time have also influenced BMI. To date, no study of secular changes in childhood obesity has considered the impact of changes in morphological factors. The current study explored the secular changes in BMI and childhood obesity risk among Japanese children from 1950 to 2000 with consideration of changes in body size and the proportions using The Statistical Report of the School Health Survey (SHS). The age of peak velocity (PV) occurred approximately two years earlier in both genders across this period. While the increments in height, sitting height and sub-ischial leg length relative to height levelled off by 1980, weight gain continued in boys. Between 1980 and 2000, the rate of the upper body weight gain in boys and girls were 0.7-1.3 kg/decade and 0.2-1.0 kg/decade, respectively. After considering body proportions, increments in body weight were small. It could be suggested that the increments in weight and BMI across the 50-year period may be due to a combination of changes including the tempo of growth and body size due to lifestyle factors.
Resumo:
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.
Resumo:
The research aimed to identify positive behavioural changes that people may make as a result of negotiating the aftermath of a traumatic experience, thereby extending the current cognitive model of posttraumatic growth (PTG). It was hypothesised that significant others would corroborate survivor’s cognitive and behavioural reports of PTG. The sample comprised 176 participants; 88 trauma survivors and 88 significant others. University students accounted for 64% of the sample and 36% were from the broader community. Approximately one third were male. All participants completed the Posttraumatic Growth Inventory [PTGI] and open ended questions regarding behavioural changes. PTGI scores in the survivor sample were corroborated by the significant others with only the Appreciation of Life factor of the PTGI differing between the two groups (e.g., total PTGI scores between groups explained 33.64% of variance). Nearly all of the survivors also reported positive changes in their behaviour and these changes were also corroborated by the significant others. Results provide validation of the posttraumatic growth construct and the PTGI as an instrument of measurement. Findings may also influence therapeutic practice for example, the potential usefulness of corroborating others.
Resumo:
Normal thoracic kyphosis Cobb angle for T5-T12 is most commonly reported as a range of 20-40º [1]. Patients with adolescent idiopathic scoliosis (AIS) exhibit a reduced thoracic kyphosis or hypokyphosis [2] accompanying the coronal and rotary distortion components. As a result, surgical restoration of the thoracic kyphosis while maintaining lumbar lordosis and overall sagittal balance is a critical aspect of achieving good clinical outcomes in AIS patients. Previous studies report an increase in thoracic kyphosis after anterior surgical approaches [3] and a flattening of sagittal contours following posterior approaches [4]. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality and are the subject of analysis in this study.
Resumo:
Background. Previous studies report an increase in thoracic kyphosis after anterior approaches and a flattening of sagittal contours following posterior approaches. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality. Methods. A prospective study of 30 Lenke 1 adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior spinal fusion (TASF) was performed. Participants had ethically approved low dose CT scans at minimum 24 months after surgery in addition to their standard care following surgery. The change in sagittal contours on supine CT was compared to standing radiographic measurements of the same patients and with previous studies. Inter-observer variability was assessed as well as whether hypokyphotic and normokyphotic patient groups responded differently to the thoracoscopic anterior approach. Results. Mean T5-12 kyphosis Cobb angle increased by 11.8 degrees and lumbar lordosis increased by 5.9 degrees on standing radiographs two years after surgery. By comparison, CT measurements of kyphosis and lordosis increased by 12.3 degrees and 7.0 degrees respectively. 95% confidence intervals for inter-observer variability of sagittal contour measurements on supine CT ranged between 5-8 degrees. TASF had a slightly greater corrective effect on patients who were hypokyphotic before surgery compared with those who were normokyphotic. Conclusions. Restoration of sagittal profile is an important goal of scoliosis surgery, but reliable measurement with radiographs suffers from poor endplate clarity. TASF significantly improves thoracic kyphosis and lumbar lordosis while preserving proximal and distal junctional alignment in thoracic AIS patients. Supine CT allows greater endplate clarity for sagittal Cobb measurements and linear relationships were found between supine CT and standing radiographic measurements. In this study, improvements in sagittal kyphosis and lordosis following surgery were in agreement with prior anterior surgery studies, and add to the current evidence suggesting that anterior correction is more capable than posterior approaches of addressing the sagittal component of both the instrumented and adjacent non instrumented segments following surgical correction of progressive Lenke 1 idiopathic scoliosis.
Resumo:
Purpose: To investigate the correlations of the global flash multifocal electroretinogram (MOFO mfERG) with common clinical visual assessments – Humphrey perimetry and Stratus circumpapillary retinal nerve fiber layer (RNFL) thickness measurement in type II diabetic patients. Methods: Forty-two diabetic patients participated in the study: ten were free from diabetic retinopathy (DR) while the remainder suffered from mild to moderate non-proliferative diabetic retinopathy (NPDR). Fourteen age-matched controls were recruited for comparison. MOFO mfERG measurements were made under high and low contrast conditions. Humphrey central 30-2 perimetry and Stratus OCT circumpapillary RNFL thickness measurements were also performed. Correlations between local values of implicit time and amplitude of the mfERG components (direct component (DC) and induced component (IC)), and perimetric sensitivity and RNFL thickness were evaluated by mapping the localized responses for the three subject groups. Results: MOFO mfERG was superior to perimetry and RNFL assessments in showing differences between the diabetic groups (with and without DR) and the controls. All the MOFO mfERG amplitudes (except IC amplitude at high contrast) correlated better with perimetry findings (Pearson’s r ranged from 0.23 to 0.36, p<0.01) than did the mfERG implicit time at both high and low contrasts across all subject groups. No consistent correlation was found between the mfERG and RNFL assessments for any group or contrast conditions. The responses of the local MOFO mfERG correlated with local perimetric sensitivity but not with RNFL thickness. Conclusion: Early functional changes in the diabetic retina seem to occur before morphological changes in the RNFL.
Resumo:
As part of an evaluation of the 2010 legislation for child vehicle occupants in Queensland, road-side observations of private passenger vehicles were used to estimate the proportions of children 0-under 7 years travelling in each of the 5 different restraint types (eg. forward facing child restraint). Data was collected in 4 major population centres: Brisbane, Sunshine Coast, Mackay and Townsville. Almost all children were restrained (95.1%, 95% CI 94.3-95.9%), with only 3.3% (95% CI 2.6-4.0%) clearly unrestrained and 44 (1.6%, 95% CI 1.1-2.1%) for whom restraint status could not be determined (‘unknown’). However, around 24.0% (95 CI 21.8-26.2%) of the target-aged children were deemed inappropriately restrained, primarily comprised of 3-6 year olds in seatbelts (18.7% of the 0-6 year olds, 95% CI 16.3-21.1%) or unrestrained (3.7% of the 0-6 year olds, 95% CI 2.5-4.9%) instead of booster seats. In addition, compliance appeared significantly lower for some regional locations where the proportion of children observed as completely unrestrained was relatively high and of concern
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.