908 resultados para Posterior parietal cortex
Resumo:
The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.
Resumo:
Correlations between the clustering patterns of the vacuolation ('spongiform change'), prion protein (PrP) deposits, and surviving neurons were studied in the cerebral cortex, hippocampus, and cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Differences in the sizes of the clusters of vacuoles were observed between brain regions and in the cerebral cortex, between the upper and lower laminae. With the exception of the parietal cortex, mean cluster size of the vacuoles was similar to that of the PrP deposits in each brain area. Clusters of the vacuoles were spatially correlated with the density of surviving neurons and with the clusters of PrP deposits in 47% and 53% of cortical areas analysed respectively but there were few spatial correlation between the PrP deposits and the density of surviving neurons. The data suggest that the pathology of sCJD may spread through the brain via specific anatomical pathways. Development of the clusters of vacuoles is spatially related to surviving neurons while the appearance of clusters of PrP deposits is related to the development of the vacuolation.
Resumo:
Abstract We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3–7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17–23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.
Resumo:
The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.
Resumo:
The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.
Resumo:
Recent evidence has suggested cerebellar anomalies in developmental dyslexia. Therefore, we investigated cerebellar morphology in subjects with documented reading disabilities. We obtained T1-weighted magnetic resonance images in the coronal and sagittal planes from 11 males with prior histories of developmental dyslexia, and nine similarly-aged male controls. Proton magnetic resonance spectra (TE=136 ms, TR=2.4 s) were obtained bilaterally in the cerebellum. Phonological decoding skill was measured using non-word reading. Handedness was assessed using both the Annett questionnaire of hand preference and Annett’s peg moving task. Cerebellar symmetry was observed in the dyslexics but there was significant asymmetry (right grey matter>left grey matter) in controls. The interpretation of these results depended whether a motor- or questionnaire-based method was used to determine handedness. The degree of cerebellar symmetry was correlated with the severity of dyslexics’ phonological decoding deficit. Those with more symmetric cerebella made more errors on a nonsense word reading measure of phonological decoding ability. Left cerebellar metabolite ratios were shown to correlate significantly with the degree of cerebellar asymmetry (P<0.05) in controls. This relationship was absent in developmental dyslexics. Cerebellar morphology reflects the higher degree of symmetry found previously in the temporal and parietal cortex of dyslexics. The relationship of cerebellar asymmetry to phonological decoding ability and handedness, together with our previous finding of altered metabolite ratios in the cerebellum of dyslexics, lead us to suggest that there are alterations in the neurological organisation of the cerebellum which relate to phonological decoding skills, in addition to motor skills and handedness.
Resumo:
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF’s local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Resumo:
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Resumo:
La division cellulaire asymétrique est un processus crucial dans le développement des organismes multicellulaires puisqu’elle permet la génération de la diversité cellulaire. Les cellules qui se divisent de façon asymétrique doivent tout d’abord se polariser et correctement orienter leur fuseau mitotique pour ségréger des déterminants cellulaires en deux entités distinctes. L’embryon du nématode C. elegans est un modèle robuste et largement utilisé pour étudier la division cellulaire asymétrique. Dans cet embryon, le point d'entrée du spermatozoïde détermine l'axe de polarité antéro-postérieur. Suite à la fécondation, le cortex embryonnaire est uniformément contractile et un complexe conservé formé des protéines PAR-3, PAR-6 et PKC-3 (nommé complexe PAR-3 ci-dessous) est localisé sur l'ensemble du cortex. La complétion de la méiose maternelle induit une relaxation corticale au postétieur et un flux cortical vers l’antérieur de l’embryon. Ces contractions corticales asymétriques mènent à la formation d'un domaine antérieur contenant le complexe PAR-3, tandis que le cortex postérieur, dont le complexe PAR-3 s’est délocalisé, est enrichi avec les protéines PAR-2 et PAR-1. Par conséquent, les domaines formés par les protéines PAR définissent un pôle antérieur et un pôle postérieur dans l'embryon suite au remodelage du cytosquelette. Les protéines PAR-4 et PAR-5 restent localisées de façon uniforme dans l'embryon. Curieusement, les protéines PAR exercent une régulation par rétroaction sur la contractilité corticale. Il a été montré qu’une des protéines PAR récemment identifiée, PAR-5, est orthologue à la protéine adaptatrice 14-3-3 et joue un rôle important dans la contractilité corticale. En dépit de son rôle central dans la contractilité corticale et le processus de polarisation cellulaire, le mécanisme par lequel PAR-5 régule la contractilité corticale n’est pas bien compris. Le but de ce projet est de mieux comprendre comment PAR-5 et ses interacteurs contrôlent la régulation des contractions corticales et, de ce fait, la polarité cellulaire. Dans un essai de capture de la protéine GST (GST pull-down), nous avons identifié plusieurs nouveaux interacteurs de PAR-5. Parmi ceux-ci, nous avons trouvé CAP-2 (protéine de coiffage de l'actine), qui a été identifiée dans des éxpériences de capture de 14-3-3 dans trois systèmes modèles différents. CAP-2 est un hétérodimère des protéines CAP, qui sont impliquées dans la régulation de l'actine. Nous avons trouvé que la déplétion des protéines CAP par interférence à l’ARN dans des vers de type sauvage mène à une augmentation létalité embryonnaire, ce qui suggère que ces protéines jouent un rôle important dans le développement embryonnaire. L'imagerie en temps réel d'embryons déplétés pour les protéines CAP montre qu’ils ont une diminution des contractions corticales avec un sillon de pseudoclivage mois stable, suggérant un défaut dans la régulation du cytosquelette d'actine-myosine. Ceci a également été confirmé par la diminution de la vitesse et du nombre de foci de NMY-2::GFP. En outre, ces embryons montrent une légère diminution de la taille du croissant cortical de PAR-2 lors de la phase d’établissement de la polarité. Les embryons déplétés en CAP-2 montrent également un retard dans la progression du cycle cellulaire, mais le lien entre ce phénotype et la régulation des contractions corticales reste à être précisé. La caractérisation des protéines CAP, des régulateurs du remodelage du cytosquelette, permettra d'améliorer notre compréhension des mécanismes qui sous-tendent l'établissement et le maintien de la polarité cellulaire, et donc la division cellulaire asymétrique.
Resumo:
La division cellulaire asymétrique est un processus crucial dans le développement des organismes multicellulaires puisqu’elle permet la génération de la diversité cellulaire. Les cellules qui se divisent de façon asymétrique doivent tout d’abord se polariser et correctement orienter leur fuseau mitotique pour ségréger des déterminants cellulaires en deux entités distinctes. L’embryon du nématode C. elegans est un modèle robuste et largement utilisé pour étudier la division cellulaire asymétrique. Dans cet embryon, le point d'entrée du spermatozoïde détermine l'axe de polarité antéro-postérieur. Suite à la fécondation, le cortex embryonnaire est uniformément contractile et un complexe conservé formé des protéines PAR-3, PAR-6 et PKC-3 (nommé complexe PAR-3 ci-dessous) est localisé sur l'ensemble du cortex. La complétion de la méiose maternelle induit une relaxation corticale au postétieur et un flux cortical vers l’antérieur de l’embryon. Ces contractions corticales asymétriques mènent à la formation d'un domaine antérieur contenant le complexe PAR-3, tandis que le cortex postérieur, dont le complexe PAR-3 s’est délocalisé, est enrichi avec les protéines PAR-2 et PAR-1. Par conséquent, les domaines formés par les protéines PAR définissent un pôle antérieur et un pôle postérieur dans l'embryon suite au remodelage du cytosquelette. Les protéines PAR-4 et PAR-5 restent localisées de façon uniforme dans l'embryon. Curieusement, les protéines PAR exercent une régulation par rétroaction sur la contractilité corticale. Il a été montré qu’une des protéines PAR récemment identifiée, PAR-5, est orthologue à la protéine adaptatrice 14-3-3 et joue un rôle important dans la contractilité corticale. En dépit de son rôle central dans la contractilité corticale et le processus de polarisation cellulaire, le mécanisme par lequel PAR-5 régule la contractilité corticale n’est pas bien compris. Le but de ce projet est de mieux comprendre comment PAR-5 et ses interacteurs contrôlent la régulation des contractions corticales et, de ce fait, la polarité cellulaire. Dans un essai de capture de la protéine GST (GST pull-down), nous avons identifié plusieurs nouveaux interacteurs de PAR-5. Parmi ceux-ci, nous avons trouvé CAP-2 (protéine de coiffage de l'actine), qui a été identifiée dans des éxpériences de capture de 14-3-3 dans trois systèmes modèles différents. CAP-2 est un hétérodimère des protéines CAP, qui sont impliquées dans la régulation de l'actine. Nous avons trouvé que la déplétion des protéines CAP par interférence à l’ARN dans des vers de type sauvage mène à une augmentation létalité embryonnaire, ce qui suggère que ces protéines jouent un rôle important dans le développement embryonnaire. L'imagerie en temps réel d'embryons déplétés pour les protéines CAP montre qu’ils ont une diminution des contractions corticales avec un sillon de pseudoclivage mois stable, suggérant un défaut dans la régulation du cytosquelette d'actine-myosine. Ceci a également été confirmé par la diminution de la vitesse et du nombre de foci de NMY-2::GFP. En outre, ces embryons montrent une légère diminution de la taille du croissant cortical de PAR-2 lors de la phase d’établissement de la polarité. Les embryons déplétés en CAP-2 montrent également un retard dans la progression du cycle cellulaire, mais le lien entre ce phénotype et la régulation des contractions corticales reste à être précisé. La caractérisation des protéines CAP, des régulateurs du remodelage du cytosquelette, permettra d'améliorer notre compréhension des mécanismes qui sous-tendent l'établissement et le maintien de la polarité cellulaire, et donc la division cellulaire asymétrique.
Resumo:
"The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task."
Resumo:
After a person chooses between two items, preference for the chosen item will increase and preference for the unchosen item will decrease because of the choice made. In other words, we tend to justify or rationalize our past behavior by changing our attitude. This phenomenon of choice-induced preference change has been traditionally explained by cognitive dissonance theory. Choosing something that is disliked or not choosing something that is liked are both cognitively inconsistent, and in order to reduce this inconsistency, people tend to change their subsequently stated preference in accordance with their past choices. Previously, neuroimaging studies identified posterior medial frontal cortex (pMFC) as a key brain region involved in cognitive dissonance. However, it still remains unknown whether the pMFC plays a causal role in inducing preference change following cognitive dissonance. Here, we demonstrate that 25-min 1-Hz repetitive transcranial magnetic stimulation (TMS) applied over the pMFC significantly reduces choice-induced preference change compared to sham stimulation, or control stimulation over a different brain region, demonstrating a causal role for the pMFC.
Resumo:
The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.
Organization of the inferotemporal cortex in the macaque monkey: Connections of areas PITv and CITvp
Resumo:
Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^
Resumo:
This study forms part of an ongoing investigation of pyramidal cell structure in the cingulate cortex of primates. Recently we have demonstrated that layer III pyramidal cells in the anterior cingulate gyrus are considerably larger, more branched and more spinous than those in the posterior cingulate gyrus (areas 24 and 23, respectively) in the macaque and vervet monkeys. Moreover, the extent of the interareal difference in specialization in pyramidal cell structure differed between the two species. These data suggest that pyramidal cell circuitry may have evolved differently in these closely related species. Presently there are too few data to speculate on what is selecting for this specialization in structure. Here we extend the basis for comparison by studying pyramidal cell structure in cingulate gyrus of the Chacma baboon (Papio ursinus). Methodology used here is the same as that for our previous studies: intracellular injection of Lucifer Yellow in flat-mounted cortical slices. We found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). Moreover, the complexity in pyramidal cell structure in both the anterior and posterior cingulate gyrus of the baboon differed to that in the corresponding regions in either the macaque or vervet monkeys. (C) 2005 Elsevier Ireland Ltd. All rights reserved.