966 resultados para Posterior lamellar endothelial keratoplasty
Resumo:
We report an empirical study of n-gram posterior probability confidence measures for statistical machine translation (SMT). We first describe an efficient and practical algorithm for rapidly computing n-gram posterior probabilities from large translation word lattices. These probabilities are shown to be a good predictor of whether or not the n-gram is found in human reference translations, motivating their use as a confidence measure for SMT. Comprehensive n-gram precision and word coverage measurements are presented for a variety of different language pairs, domains and conditions. We analyze the effect on reference precision of using single or multiple references, and compare the precision of posteriors computed from k-best lists to those computed over the full evidence space of the lattice. We also demonstrate improved confidence by combining multiple lattices in a multi-source translation framework. © 2012 The Author(s).
Resumo:
Endothelial filopodia play key roles in guiding the tubular sprouting during angiogenesis. However, their dynamic morphological characteristics, with the associated implications in cell motility, have been subjected to limited investigations. In this work, the interaction between endothelial cells and extracellular matrix fibrils was recapitulated in vitro, where a specific focus was paid to derive the key morphological parameters to define the dynamics of filopodium-like protrusion during cell motility. Based on one-dimensional gelatin fibrils patterned by near-field electrospinning (NFES), we study the response of endothelial cells (EA.hy926) under normal culture or ROCK inhibition. It is shown that the behaviour of temporal protrusion length versus cell motility can be divided into distinct modes. Persistent migration was found to be one of the modes which permitted cell displacement for over 300 μm at a speed of approximately 1 μm min-1. ROCK inhibition resulted in abnormally long protrusions and diminished the persistent migration, but dramatically increased the speeds of protrusion extension and retraction. Finally, we also report the breakage of protrusion during cell motility, and examine its phenotypic behaviours. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
The effects of hydrodynamic interactions on the lamellar ordering process for two-dimensional quenched block copolymers in the presence of extended defects and the topological defect evolutions in lamellar ordering process are numerically investigated by means of a model based on lattice Boltzmann method and self-consistent field theory. By observing the evolution of the average size of domains, it is found that the domain growth is faster with stronger hydrodynamic effects. The morphological patterns formed also appear different. To study the defect evolution, a defect density is defined and is used to explore the defect evolutions in lamellar ordering process. Our simulation results show that the hydrodynamics effects can reduce the density of defects. With our model, the relations between the Flory-Huggins interaction parameter chi, the length of the polymer chains N, and the defect evolutions are studied.
Resumo:
Aqueous conducting polyaniline dispersion was prepared employing acidic phosphate ester bearing hydrophilic ethylene glycol segment as dopant, and conducting film with electrical conductivity of 25 S/cm was obtained from the dispersion. Ordered self-assembly lamellar structure with interlamellar distance of 1.2 nm was observed in the film, which consisted of alternating layers of rigid polyaniline chain and flexible phosphate ester side chains, where the phosphate side chain layer was separated by two rigid polyaniline layers. The lamellar structure leading to high conducting film was formed due to the confinement of polyaniline chain by crystallizable phosphate side chain, since the electrical conductivity decreased by four orders of magnitude once the dopant side chain crystalline was destroyed. The crystallizable side chain forced lamellar structure is expected to be a new chance for highly conducting polyaniline.
Resumo:
We developed an approach, i.e. solvent-assist crystallization (SAC), for growing high quality single crystals of head-to-tail regio-regular poly(3-butylthiophene) (P3BT). By means of atomic force microscopy, electron diffraction and X-ray diffraction, we found that P3BT macromolecules formed lamella single crystals through gradient crystallization, and in the single crystals, molecules packed normal to the lamella with extended-chain conformation with alkyl side chains in the growth front during crystallization.
Resumo:
We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.
Resumo:
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone.
Resumo:
The effect of crystallization on the lamellar orientation of poly( styrene)-b-poly(L-lactide) (PS-PLLA) semicrystalline diblock copolymer in thin films has been investigated by atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In the melt state, microphase separation leads to a symmetric wetting structure with PLLA blocks located at both polymer/substrate and polymer/air interfaces. The lamellar period is equal to the long period L in bulk determined by small-angle X-ray scattering (SAXS). Symmetric wetting structure formed in the melt state provides a model structure to study the crystallization of PLLA monolayer tethered on glassy (T-c < T-g,T-PS) or rubber (T-c > T-g,T-PS) PS substrate. In both cases, it is found that the crystallization of PLLA results in a "sandwich" structure with amorphous PS layer located at both folding surfaces. For T-c <= T-g,T- PS, the crystallization induces a transition of the lamellar orientation from parallel to perpendicular to substrate in between and front of the crystals. In addition, the depletion of materials around the crystals leads to the formation of holes of 1/2 L, leaving the adsorbed monolayer exposure at the bottom of the holes.
Resumo:
8-Hydroxyquinoline (8-q) salt of pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H(4)bta) forms robust lamellar structure where [H(2)bta](2-) anions build up sheets through strong hydrogen bonds in two dimensions and [H-8-q](+) cations act as pillars to afford an extended three dimensional network.
Resumo:
A novel morphology of TPBD crystals consisting of a three-dimensional interlaced network was obtained by casting the self-seeded 0.1% benzene solution onto carbon-boated mica. Both the transmission electron microscopy (TEM) and electron diffraction (ED) analyses showed that the network was composed of well-developed lamellae. It is imagined this interesting morphology is the results of asymmetrical growth of the original TPBD lamellae on the amorphous interface, and that their preferred orientation changed when they encountered each other.
Resumo:
A new solvent, dimethylformamide (DMF), and the traditional solvent, 1,4-butanediol, were used to prepare single crystals of nylon-10,10 from a dilute solution. The lamellae grown from DMF inhabited a more perfect structure and regular shape than those crystals crystallized from traditional solvents such as 1,4-butanediol and glycerin. These thin and perfect lamellar crystals demonstrated patterns of variation in spacing different from those of melt-crystallized spherulites on heating. Specifically, the two main spacings slightly separated rather than continuously approaching each other when the temperature was greater than 180 degreesC. This is a novel phenomenon observed in nylons. Nevertheless, the usual pattern of change in spacing was observed during the cooling process. These lamellar crystals showed more compact spacing of the (002) and (010/100) planes than spherulites at room temperature. (C) 2001 John Wiley & Sons, Inc.