999 resultados para Pollen Flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a parameter lambda > 0, we study a type of vortex equations, which generalize the well-known Hermitian-Einstein equation, for a connection A and a section phi of a holomorphic vector bundle E over a Kahler manifold X. We establish a global existence of smooth solutions to heat flow for a self-dual Yang-Mills-Higgs field on E. Assuming the lambda -stability of (E, phi), we prove the existence of the Hermitian Yang-Mills-Higgs metric on the holomorphic bundle E by studying the limiting behaviour of the gauge flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifuge experiments modeling single-phase flow in prototype porous media typically use the same porous medium and permeant. Then, well-known scaling laws are used to transfer the results to the prototype. More general scaling laws that relax these restrictions are presented. For permeants that are immiscible with an accompanying gas phase, model-prototype (i.e., centrifuge model experiment-target system) scaling is demonstrated. Scaling is shown to be feasible for Miller-similar (or geometrically similar) media. Scalings are presented for a more, general class, Lisle-similar media, based on the equivalence mapping of Richards' equation onto itself. Whereas model-prototype scaling of Miller-similar media can be realized easily for arbitrary boundary conditions, Lisle-similarity in a finite length medium generally, but not always, involves a mapping to a moving boundary problem. An exception occurs for redistribution in Lisle-similar porous media, which is shown to map to spatially fixed boundary conditions. Complete model-prototype scalings for this example are derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reproductive biology and pollination mechanisms of Govenia utriculata (Sw.) Lindl. were studied in a mesophytic semideciduous forest at Serra do Japi, south-eastern Brazil. The floral visitors and pollination mechanisms were recorded, and experimental pollinations were carried out to determine the breeding system of this species. Populations of G. utriculata growing at Serra do Japi are exclusively visited and pollinated by two species of hoverflies in the genus Salpingogaster (Diptera: Syrphidae) that are attracted by deceit to the flowers of this orchid species. The lip apex and the column base present small brownish and yellow to orange spots that mimic pollen clusters. Govenia utriculata is self-compatible, but pollinator dependent. Natural fruit set was low (10%), but similar to that of other non-obligatorily autogamous sympatric orchid species that occur at Serra do Japi and of other fly-pollinated orchid species pollinated through deceptive mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ficus arpazusa Casaretto is a fig tree native to the Atlantic Rain Forest sensu lato. High levels of genetic diversity and no inbreeding were observed in Ficus arpazusa. This genetic pattern is due to the action of its pollinator, Pegoscapus sp., which disperses pollen an estimated distance of 5.6 km, and of Ficus arpazusa`s mating system which, in the study area, is allogamous. This study highlights the importance of adding both ecological and genetic data into population studies, allowing a better understanding of evolutionary processes and in turn increasing the efficacy of forest management and revegetation projects, as well as species conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate substitutes for pollen are necessary for maintaining healthy bee colonies during periods of pollen dearth, but testing them objectively is both time consuming and expensive. We compared two commercial diets with bee collected pollen and acacia pod flour (used by beekeepers in some parts of Brazil) by measuring their effect on haemolymph protein contents of young bees exclusively fed on these diets, which is a fast and inexpensive assay. The commercial diets included a new, non-soy-based, pollen substitute diet (named Feed-Bee (R)) and a soy-based diet, named Bee-Pro (R). The diets were each given in patty form to groups of 100 Africanized honey bees in hoarding cages, maintained and fed from emergence until six days of age. Sucrose, in the form of sugar syrup, was used as a protein free control. Feed-Bee (R), Bee-Pro (R), pollen and acacia pod flour diets increased protein titers in the haemolymph by factors of 2.65, 2.51, 1.76 and 1.69, respectively, over protein titers in bees fed only sucrose solution. The bees fed Feed-Bee (R) and Bee-Pro (R) had their haemolymph significantly enriched in protein compared to the controls and those fed acacia pod flour and to titers slightly higher than those fed pollen. All four proteinaceous diets were significantly superior to sucrose alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.