938 resultados para Plug-in electric vehicle
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
The end consumers in a smart grid context are seen as active players. The distributed generation resources applied in smart home system as a micro and small-scale systems can be wind generation, photovoltaic and combine heat and power facility. The paper addresses the management of domestic consumer resources, i.e. wind generation, solar photovoltaic, combined heat and power, electric vehicle with gridable capability and loads, in a SCADA system with intelligent methodology to support the user decision in real time. The main goal is to obtain the better management of excess wind generation that may arise in consumer’s distributed generation resources. The optimization methodology is performed in a SCADA House Intelligent Management context and the results are analyzed to validate the SCADA system.
Resumo:
Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.
Resumo:
Master Thesis in Mechanical Engineering field of Maintenance and Production
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
The implementation of smart homes allows the domestic consumer to be an active player in the context of the Smart Grid (SG). This paper presents an intelligent house management system that is being developed by the authors to manage, in real time, the power consumption, the micro generation system, the charge and discharge of the electric or plug-in hybrid vehicles, and the participation in Demand Response (DR) programs. The paper proposes a method for the energy efficiency analysis of a domestic consumer using the SCADA House Intelligent Management (SHIM) system. The main goal of the present paper is to demonstrate the economic benefits of the implemented method. The case study considers the consumption data of some real cases of Portuguese house consumption over 30 days of June of 2012, the Portuguese real energy price, the implementation of the power limits at different times of the day and the economic benefits analysis.
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Die Luftverschmutzung, die globale Erwärmung sowie die Verknappung der endlichen Ressourcen sind die größten Bedenken der vergangenen Jahrzehnte. Die Nachfrage nach jeglicher Mobilität steigt rapide. Dementsprechend bemüht ist die Automobilindustrie Lösungen für Mobilität unter dem Aspekt der Nachhaltigkeit und dem Umweltschutz anzubieten. Die Elektrifizierung hat sich hierbei als der beste Weg herausgestellt, um die Umweltprobleme sowie die Abhängigkeit von fossilen Brennstoffen zu lösen. Diese Arbeit soll einen Einblick über die Umweltauswirkungen des Hybridfahrzeuges Toyota Prius geben. Hierbei findet eine Gliederung in vier verschiedene Lebensphasen statt. Im Anschluss bietet die Sachbilanz die Möglichkeit die Umweltauswirkungen mit verschiedenen Antriebsmöglichkeiten und Brennstoffen zu vergleichen. Das Modell hat gezeigt, dass der Toyota Prius während der Nutzung einen hohen Einfluss auf das Treibhauspotenzial aufweist. Durch die Nutzung anderer Brennstoffe, wie beispielsweise Ethanol oder Methanol lassen sich die Auswirkungen am Treibhauspotenzial sowie der Verbrauch an abiotischen Ressourcen reduzieren. Vergleicht man die Elektromobilität mit der konventionellen, so ist festzustellen, dass diese Art der Mobilität die derzeit beste Möglichkeit zur Reduzierung der Umweltbelastungen bietet. Die Auswirkungen der Elektromobilität sind im hohen Maße abhängig von der Art des verwendeten Strommixes.
Resumo:
Paper presented at the Colloquium Gerpisa 2013, Paris (http://gerpisa.org/node/2085), Session n°: 19 New kinds of mobility: old and new business models
Resumo:
This paper proposes a single-phase reconfigurable battery charger for Electric Vehicle (EV) that operates in three different modes: Grid-to-Vehicle (G2V) mode, in which the traction batteries are charged from the power grid; Vehicle-to-Grid (V2G) mode, in which the traction batteries deliver part of the stored energy back to the power grid; and in Traction-to-Auxiliary (T2A) mode, in which the auxiliary battery is charged from the traction batteries. When connected to the power grid, the battery charger works with sinusoidal current in the AC side, for both G2V and V2G modes, and also regulates the reactive power. When the EV is disconnected from the power grid, the control algorithms are modified and the full-bridge AC-DC bidirectional converter works as a full-bridge isolated DC-DC converter that is used to charge the auxiliary battery of the EV, avoiding the use of an additional charger to accomplish this task. To assess the behavior of the proposed reconfigurable battery charger under different operation scenarios, a 3.6 kW laboratory prototype has been developed and experimental results are presented.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
Tulevaisuudessa sähköverkko kohtaa monia haasteita, kun sähköautot yleistyvät, vaatien suuren tehotarpeen. Uusiutuvan energiantuotannon epävarma huipputehon tuotanto ei välttämättä pysty kattamaan sähköautoista johtuvaa suurta tehopiikkiä, jos suuret määrät ajoneuvoista kytketään yhtä aikaa lataukseen. Jos sähköajoneuvot voidaan ladata ohjatusti, ei välttämättä tarvita lisäenergian tuotantoa kattamaan kasvanutta huipputehon tarvetta. Lisäksi sähköajoneuvojen akut toimivat koko sähköverkolle energiavarastoina, jollaista ei ole ennen ollut. Älykkäällä sähköverkolla voidaan ohjata sähköajoneuvon latausta, mikäli ajoneuvossa on ohjausjärjestelmä ja akkujen varaustilan mittaus. Tässä kandidaatin työssä ohjelmoidaan mittaus- ja ohjauskortti plug-in hybridiautoa varten, jossa on V2G-ominaisuus. Ohjainkortista toteutetaan toimintakuvaus, jonka mukaan se myös ohjelmoidaan. Ohjainkortti mittaa akkujen jännitettä ja virtaa, joista voidaan määrittää akkujen varaustilat. Ohjainkortti lähettää tiedot eteenpäin PC:lle, jolta ohjainkortti saa käskyn toimintatilasta. Mittaustietojen perusteella voidaan seurata mahdollisia vikatilanteita. Kandidaatintyön aikana ohjainkorttia ei ehditty asentamaan ajoneuvoon, mutta laboratoriotestien mukaan voidaan todeta, että ohjainkortti on ohjelmallisesti toimiva. Mittauksissa selvisi, että ohjainkortin mittaustulot eivät olleet tarpeeksi tarkkoja käyttökohteeseen. Todettiin, että ohjainkortti vaatii rakenteellisia muutoksia mittaustuloksien parantamista varten, ennen ohjainkortin käyttöönottoa, mutta kandidaatintyön tavoitteet saavutettiin.
Resumo:
The number of electric vehicles grows continuously and the implementation of charging electric vehicles is an important issue for the future. Increasing amount of electric vehicles can cause problems to distribution grid by increasing peak load. Currently charging of electric vehicles is uncontrolled, but as the amount of electric vehicles grows, smart charg-ing (controlled charging) will be one possible solution to handle this situation. In this thesis smart charging of electric vehicles is examined from electricity retailers` point of view. The purpose is to find out plausible saving potentials of smart charging, when it´s controlled by price signal. Saving potential is calculated by comparing costs of price signal controlled charging and uncontrolled charging.