987 resultados para Plasmons (Physics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the raise and peel model of a one-dimensional fluctuating interface in the presence of an attractive wall. The model can also describe a pair annihilation process in disordered unquenched media with a source at one end of the system. For the stationary states, several density profiles are studied using Monte Carlo simulations. We point out a deep connection between some profiles seen in the presence of the wall and in its absence. Our results are discussed in the context of conformal invariance ( c = 0 theory). We discover some unexpected values for the critical exponents, which are obtained using combinatorial methods. We have solved known ( Pascal`s hexagon) and new (split-hexagon) bilinear recurrence relations. The solutions of these equations are interesting in their own right since they give information on certain classes of alternating sign matrices.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virginia Long, Physics Department Reading Gone to Soldiers by Marge Piercy (PS3566.I4 G6 1987)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O acoplamento de radiação óptica em sistemas multicamadas tem sido objeto de diversas pesquisas, não somente acadêmicas, mas também para aplicações industriais, tanto na área de sensores ópticos, como na de processadores ópticos e na de comunicações ópticas. Existe uma variedade de técnicas que são exploradas nestes estudos. Nesta tese, focalizamos nossa atenção no acoplamento de radiação laser ou mesmo de luz branca incoerente a um filme tipo multicamadas e estudamos os mecanismos físicos que governam as reflexões e as perdas por absorção nas multicamadas, efeitos que normalmente não parecem quando a incidência ocorre diretamente do ar para o filme. A técnica que exploramos é conhecida como reflexão interna total atenuada, ATR. A presença de um filme fino metálico permite o estudo experimental de plasmons de superfície e do acoplamento a modos guiados do sistema multicamadas. Além dos estudos experimentais, apresentamos um cálculo teórico iterativo para a refletividade dos filmes do tipo multicamadas para um número qualquer de camadas, que apresenta vantagens computacionais no ajuste dos dados experimentais ou em simulações. Esta contribuição não necessita as aproximações encontradas em um grande número de trabalhos que envolvem sistemas mais simples. Apresentamos também o cálculo do fluxo de energia dentro de cada camada individual do sistema, o que nos permite determinar o tipo de modo acoplado e a sua localização. O método foi aplicado a diversos sistemas, quando uma das camadas foi modificada. Estes estudos foram realizados como função do ângulo de incidência e do comprimento de onda da radiação incidente para uma variedade de sistemas multicamadas. Nossa simulação teórica se mostra bastante adequada e útil para a projeção de sistemas multicamadas complexos com camadas metálicas e dielétricas para sensores óticos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a. top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter of the "Flavor in the era of LHC" workshop report discusses flavor-related issues in the production and decays of heavy states at the LHC at high momentum transfer Q, both from the experimental and the theoretical perspective. We review top quark physics, and discuss the flavor aspects of several extensions of the standard model, such as supersymmetry, little Higgs models or models with extra dimensions. This includes discovery aspects, as well as the measurement of several properties of these heavy states. We also present publicly available computational tools related to this topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the elementary excitations such as photons, phonons, plasmons, polaritons, polarons, excitons and magnons, in crystalline solids and nanostructures systems are nowdays important active field for research works in solid state physics as well as in statistical physics. With this aim in mind, this work has two distinct parts. In the first one, we investigate the propagation of excitons polaritons in nanostructured periodic and quasiperiodic multilayers, from the description of the behavior for bulk and surface modes in their individual constituents. Through analytical, as well as computational numerical calculation, we obtain the spectra for both surface and bulk exciton-polaritons modes in the superstructures. Besides, we investigate also how the quasiperiodicity modifies the band structure related to the periodic case, stressing their amazing self-similar behavior leaving to their fractal/multifractal aspects. Afterwards, we present our results related to the so-called photonic crystals, the eletromagnetic analogue of the electronic crystalline structure. We consider periodic and quasiperiodic structures, in which one of their component presents a negative refractive index. This unusual optic characteristic is obtained when the electric permissivity and the magnetic permeability µ are both negatives for the same range of angular frequency ω of the incident wave. The given curves show how the transmission of the photon waves is modified, with a striking self-similar profile. Moreover, we analyze the modification of the usual Planck´s thermal spectrum when we use a quasiperiodic fotonic superlattice as a filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear matter calculations with realistic nucleon-nucleon potentials present a general scaling between the nucleon-nucleus binding energy, the corresponding saturation density, and the triton binding energy. The Thomas-Efimov three-body effect implies in correlations among low-energy few-body and many-body observables. It is also well known that, by varying the short-range repulsion, keeping the two-nucleon information (deuteron and scattering) fixed, the four-nucleon and three-nucleon binding energies lie on a very narrow band known as a Tjon line. By looking for a universal scaling function connecting the proper scales of the few-body system with those of the many-body system, we suggest that the general nucleus-nucleon scaling mechanism is a manifestation of a universal few-body effect.