982 resultados para Physical damage
Resumo:
There is increased recognition that determinants of health should be investigated in a life-course perspective. Retirement is a major transition in the life course and offers opportunities for changes in physical activity that may improve health in the aging population. The authors examined the effect of retirement on changes in physical activity in the GLOBE Study, a prospective cohort study known by the Dutch acronym for "Health and Living Conditions of the Population of Eindhoven and surroundings," 1991–2004. They followed respondents (n = 971) by postal questionnaire who were employed and aged 40–65 years in 1991 for 13 years, after which they were still employed (n = 287) or had retired (n = 684). Physical activity included 1) work-related transportation, 2) sports participation, and 3) nonsports leisure-time physical activity. Multinomial logistic regression analyses indicated that retirement was associated with a significantly higher odds for a decline in physical activity from work-related transportation (odds ratio (OR) = 3.03, 95% confidence interval (CI): 1.97, 4.65), adjusted for sex, age, marital status, chronic diseases, and education, compared with remaining employed. Retirement was not associated with an increase in sports participation (OR = 1.12, 95% CI: 0.71, 1.75) or nonsports leisure-time physical activity (OR = 0.80, 95% CI: 0.54, 1.19). In conclusion, retirement introduces a reduction in physical activity from work-related transportation that is not compensated for by an increase in sports participation or an increase in nonsports leisure-time physical activity.
Resumo:
Non Alcoholic Fatty Liver Disease (NAFLD) is a condition that is frequently seen but seldom investigated. Until recently, NAFLD was considered benign, self-limiting and unworthy of further investigation. This opinion is based on retrospective studies with relatively small numbers and scant follow-up of histology data. (1) The prevalence for adults, in the USA is, 30%, and NAFLD is recognized as a common and increasing form of liver disease in the paediatric population (1). Australian data, from New South Wales, suggests the prevalence of NAFLD in “healthy” 15 year olds as being 10%.(2) Non-alcoholic fatty liver disease is a condition where fat progressively invades the liver parenchyma. The degree of infiltration ranges from simple steatosis (fat only) to steatohepatitis (fat and inflammation) steatohepatitis plus fibrosis (fat, inflammation and fibrosis) to cirrhosis (replacement of liver texture by scarred, fibrotic and non functioning tissue).Non-alcoholic fatty liver is diagnosed by exclusion rather than inclusion. None of the currently available diagnostic techniques -liver biopsy, liver function tests (LFT) or Imaging; ultrasound, Computerised tomography (CT) or Magnetic Resonance Imaging (MRI) are specific for non-alcoholic fatty liver. An association exists between NAFLD, Non Alcoholic Steatosis Hepatitis (NASH) and irreversible liver damage, cirrhosis and hepatoma. However, a more pervasive aspect of NAFLD is the association with Metabolic Syndrome. This Syndrome is categorised by increased insulin resistance (IR) and NAFLD is thought to be the hepatic representation. Those with NAFLD have an increased risk of death (3) and it is an independent predictor of atherosclerosis and cardiovascular disease (1). Liver biopsy is considered the gold standard for diagnosis, (4), and grading and staging, of non-alcoholic fatty liver disease. Fatty-liver is diagnosed when there is macrovesicular steatosis with displacement of the nucleus to the edge of the cell and at least 5% of the hepatocytes are seen to contain fat (4).Steatosis represents fat accumulation in liver tissue without inflammation. However, it is only called non-alcoholic fatty liver disease when alcohol - >20gms-30gms per day (5), has been excluded from the diet. Both non-alcoholic and alcoholic fatty liver are identical on histology. (4).LFT’s are indicative, not diagnostic. They indicate that a condition may be present but they are unable to diagnosis what the condition is. When a patient presents with raised fasting blood glucose, low HDL (high density lipoprotein), and elevated fasting triacylglycerols they are likely to have NAFLD. (6) Of the imaging techniques MRI is the least variable and the most reproducible. With CT scanning liver fat content can be semi quantitatively estimated. With increasing hepatic steatosis, liver attenuation values decrease by 1.6 Hounsfield units for every milligram of triglyceride deposited per gram of liver tissue (7). Ultrasound permits early detection of fatty liver, often in the preclinical stages before symptoms are present and serum alterations occur. Earlier, accurate reporting of this condition will allow appropriate intervention resulting in better patient health outcomes. References 1. Chalasami N. Does fat alone cause significant liver disease: It remains unclear whether simple steatosis is truly benign. American Gastroenterological Association Perspectives, February/March 2008 www.gastro.org/wmspage.cfm?parm1=5097 Viewed 20th October, 2008 2. Booth, M. George, J.Denney-Wilson, E: The population prevalence of adverse concentrations with adiposity of liver tests among Australian adolescents. Journal of Paediatrics and Child Health.2008 November 3. Catalano, D, Trovato, GM, Martines, GF, Randazzo, M, Tonzuso, A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study .Liver Int.2008; February 1280-9 4. Choudhury, J, Sanysl, A. Clinical aspects of Fatty Liver Disease. Semin in Liver Dis. 2004:24 (4):349-62 5. Dionysus Study Group. Drinking factors as cofactors of risk for alcohol induced liver change. Gut. 1997; 41 845-50 6. Preiss, D, Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci.2008; 115 141-50 7. American Gastroenterological Association. Technical review on nonalcoholic fatty liver disease. Gastroenterology.2002; 123: 1705-25
Resumo:
This PhD project has expanded the knowledge in the area of profluorescent nitroxides with regard to the synthesis and characterisations of novel profluorescent nitroxide probes as well as physical characterisation of the probe molecules in various polymer/physical environments. The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, was described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation. In addition to the parent TMAO, 5 other azaphenalene derivatives were successfully synthesised. This new class of nitroxide was expected to have interesting redox properties when the structure was investigated by high-level ab initio molecular orbitals theory. This was expected to have implications with biological relevance as the calculated redox potentials for the azaphenalene ring class would make them potent antioxidant compounds. The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrroline, piperidine, isoindoline and azaphenalene) were determined by cyclic voltammetry in acetonitrile. It was shown that potentials related to the one electron processes of the nitroxide were influenced by the type of ring system, ring substituents or groups surrounding the moiety. Favourable comparisons were found between theoretical and experimental potentials for pyrroline, piperidine and isoindoline ring classes. Substitution of these ring classes, were correctly calculated to have a small yet predictable effect on the potentials. The redox potentials of the azaphenalene ring class were underestimated by the calculations in all cases by at least a factor of two. This is believed to be due to another process influencing the redox potentials of the azaphenalene ring class which is not taken into account by the theoretical model. It was also possible to demonstrate the use of both azaphenalene and isoindoline nitroxides as additives for monitoring radical mediated damage that occurs in polypropylene as well as in more commercially relevant polyester resins. Polymer sample doped with nitroxide were exposed to both thermo-and photo-oxidative conditions with all nitroxides showing a protective effect. It was found that isoindoline nitroxides were able to indicate radical formation in polypropylene aged at elevated temperatures via fluorescence build-up. The azaphenalene nitroxide TMAO showed no such build-up of fluorescence. This was believed to be due to the more labile bond between the nitroxide and macromolecule and the protection may occur through a classical Denisov cycle, as is expected for commercially available HAS units. Finally, A new profluorescent dinitroxide, BTMIOA (9,10-bis(1,1,3,3- tetramethylisoindolin-2-yloxyl-5-yl)anthracene), was synthesised and shown to be a powerful probe for detecting changes during the initial stages of thermo-oxidative degradation of polypropylene. This probe, which contains a 9,10-diphenylanthracene core linked to two nitroxides, possesses strongly suppressed fluorescence due to quenching by the two nitroxide groups. This molecule also showed the greatest protective effect on thermo-oxidativly aged polypropylene. Most importantly, BTMIOA was found to be a valuable tool for imaging and mapping free-radical generation in polypropylene using fluorescence microscopy.
Resumo:
Pollutants originating with roof runoff can have a significant impact to urban stormwater quality. This signifies the importance of understanding pollutant processes on roof surfaces. Additionally, knowledge of pollutant processes on roof surfaces is important as roofs are used as the primary catchment surface for domestic rainwater harvesting. In recent years, rainwater harvesting has become one of the primary sustainable water management techniques to counteract the growing demand for potable water. Similar to all impervious services, pollutants associated with roof runoff undergo two primary processes: build-up and wash-off. The knowledge relating to these processes is limited. This paper presents outcomes of an in-depth research study into pollutant build-up and wash-off for roof surfaces. The knowledge will be important in order to develop appropriate strategies to safeguard rainwater users from possible health risks.
Resumo:
As teachers, we must know about the physical developmental processes our students are experiencing. These are reflected in behaviour, emotions and relationships. And for adolescents, who are trying hard to figure out how the world operates, the physical changes they experience have a potent impact on their world view. While the sequencing of much of our physical development is pretty well according to a grand template and rolls out in much the same way from one person to the next, not everything occurs in a set way (Richter, 2006). Some aspects of our physical development cause other things to occur and are tied together. For example, hormonal changes during puberty are tied to the development of secondary sexual characteristics. However, there is individual variation at multiple levels, and we will discuss these. To complicate things, adolescents’ feelings and ideas about themselves and the ways in which they interact with the world as they grow and change are coloured by our societies’ multifaceted sets of ideals, standards and expectations for physical development. Many other things also impact on our conceptions of self and these will be discussed when we turn our attention to the development of identity through adolescence. In this chapter we will present some basic information about the types of physical changes to expect during adolescence, and consider some challenges that confront adolescents during this time of development.
Resumo:
Vibration based damage identification methods examine the changes in primary modal parameters or quantities derived from modal parameters. As one method may have advantages over the other under some circumstances, a multi-criteria approach is proposed. Case studies are conducted separately on beam, plate and plate-on-beam structures. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on flexibility and strain energy changes before and after damage are obtained and used as the indices for the assessment of the state of structural health. Results show that the proposed multi-criteria method is effective in damage identification in these structures.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.
Resumo:
Iconic and significant buildings are the common target of bombings by terrorists causing large numbers of casualties and extensive property damage. Recent incidents were external bomb attacks on multi-storey buildings with reinforced concrete frames. Under a blast load circumstance, crucial damage initiates at low level storeys in a building and may then lead to a progressive collapse of whole or part of the structure. It is therefore important to identify the critical initial influence regions along the height, width and depth of the building exposed to blast effects and the structure response in order to assess the vulnerability of the structure to disproportionate and progressive collapse. This paper discusses the blast response and the propagation of its effects on a two dimensional reinforced concrete (RC) frame, designed to withstand normal gravity loads. The explicit finite element code, LS DYNA is used for the analysis. A complete RC portal frame seven storeys by six bays is modelled with reinforcement details and appropriate materials to simulate strain rate effects. Explosion loads derived from standard manuals are applied as idealized triangular pressures on the column faces of the numerical models. The analysis reports the influence of blast propagation as displacements and material yielding of the structural elements in the RC frame. The effected regions are identified and classified according to the load cases. This information can be used to determine the vulnerability of multi-storey RC buildings to various external explosion scenarios and designing buildings to resist blast loads.
Resumo:
There is a growing evidence-base in the epidemiological literature that demonstrates significant associations between people’s living circumstances – including their place of residence – and their health-related practices and outcomes (Leslie, 2005; Karpati, Bassett, & McCord, 2006; Monden, Van Lenthe, & Mackenbach, 2006; Parkes & Kearns, 2006; Cummins, Curtis, Diez-Roux, & Macintyre, 2007; Turrell, Kavanagh, Draper, & Subramanian, 2007). However, these findings raise questions about the ways in which living places, such as households and neighbourhoods, figure in the pathways connecting people and health (Frolich, Potvin, Chabot, & Corin, 2002; Giles-Corti, 2006; Brown et al, 2006; Diez Roux, 2007). This thesis addressed these questions via a mixed methods investigation of the patterns and processes connecting people, place, and their propensity to be physically active. Specifically, the research in this thesis examines a group of lower-socioeconomic residents who had recently relocated from poorer suburbs to a new urban village with a range of health-related resources. Importantly, the study contrasts their historical relationship with physical activity with their reactions to, and everyday practices in, a new urban setting designed to encourage pedestrian mobility and autonomy. The study applies a phenomenological approach to understanding living contexts based on Berger and Luckman’s (1966) conceptual framework in The Social Construction of Reality. This framework enables a questioning of the concept of context itself, and a treatment of it beyond environmental factors to the processes via which experiences and interactions are made meaningful. This approach makes reference to people’s histories, habituations, and dispositions in an exploration between social contexts and human behaviour. This framework for thinking about context is used to generate an empirical focus on the ways in which this residential group interacts with various living contexts over time to create a particular construction of physical activity in their lives. A methodological approach suited to this thinking was found in Charmaz’s (1996; 2001; 2006) adoption of a social constructionist approach to grounded theory. This approach enabled a focus on people’s own constructions and versions of their experiences through a rigorous inductive method, which provided a systematic strategy for identifying patterns in the data. The findings of the study point to factors such as ‘childhood abuse and neglect’, ‘early homelessness’, ‘fear and mistrust’, ‘staying indoors and keeping to yourself’, ‘conflict and violence’, and ‘feeling fat and ugly’ as contributors to an ongoing core category of ‘identity management’, which mediates the relationship between participants’ living contexts and their physical activity levels. It identifies barriers at the individual, neighbourhood, and broader ecological levels that prevent this residential group from being more physically active, and which contribute to the ways in which they think about, or conceptualise, this health-related behaviour in relationship to their identity and sense of place – both geographic and societal. The challenges of living well and staying active in poorer neighbourhoods and in places where poverty is concentrated were highlighted in detail by participants. Participants’ reactions to the new urban neighbourhood, and the depth of their engagement with the resources present, are revealed in the context of their previous life-experiences with both living places and physical activity. Moreover, an understanding of context as participants’ psychological constructions of various social and living situations based on prior experience, attitudes, and beliefs was formulated with implications for how the relationship between socioeconomic contextual effects on health are studied in the future. More detailed findings are presented in three published papers with implications for health promotion, urban design, and health inequalities research. This thesis makes a substantive, conceptual, and methodological contribution to future research efforts interested in how physical activity is conceptualised and constructed within lower socioeconomic living contexts, and why this is. The data that was collected and analysed for this PhD generates knowledge about the psychosocial processes and mechanisms behind the patterns observed in epidemiological research regarding socioeconomic health inequalities. Further, it highlights the ways in which lower socioeconomic living contexts tend to shape dispositions, attitudes, and lifestyles, ultimately resulting in worse health and life chances for those who occupy them.
Resumo:
The climatic conditions of tropical and subtropical regions within Australia present, at times, extreme risk of physical activity induced heat illness. Many administrators and teachers in school settings are aware of the general risks of heat related illness. In the absence of reliable information applied at the local level, there is a risk that inappropriate decisions may be made concerning school events that incorporate opportunities to be physically active. Such events may be prematurely cancelled resulting in the loss of necessary time for physical activity. Under high or extremely high risk conditions however, the absence of appropriate modifications or continuation could place the health of students, staff and other parties at risk. School staff and other key stakeholders should understand the mechanisms of escalating risk and be supported to undertake action to reduce the level of risk through appropriate policies, procedures, resources and action plans.
Resumo:
In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.