985 resultados para Phycocyanin-alpha subunit
Resumo:
To investigate the mechanism by which beta-hydroxy-beta-methylbutyrate (HMB) attenuates the depression of protein synthesis in the skeletal muscle of cachectic mice, a study has been carried out in murine myotubes in the presence of proteolysis-inducing factor (PIF). PIF inhibited protein synthesis by 50% within 4 h, and this was effectively attenuated by HMB (25-50 muM). HMB (50 muM) alone stimulated protein synthesis, and this was attenuated by rapamycin (27 nM), an inhibitor of mammalian target of rapamycin (mTOR). Further evidence for an involvement of this pathway was shown by an increased phosphorylation of mTOR, the 70-kDa ribosomal S6 kinase (p70(S6k)), and initiation factor 4E-binding protein (4E-BP1) and an increased association of eukaryotic initiation factor 2 (eIF4E) with eIF4G. PIF alone induced a transient (1-2 h) stimulation of phosphorylation of mTOR and p70(S6k). However, in the presence of HMB, phosphorylation of mTOR, p70(S6k), and 4E-BP1 was increased, and inactive 4E-BP1-eIF4E complex was reduced, whereas the active eIF4G.eIF4E complex was increased, suggesting continual stimulation of protein synthesis. HMB alone reduced phosphorylation of elongation factor 2, but this effect was not seen in the presence of PIF. PIF induced autophosphorylation of the double-strand RNA-dependent protein kinase (PKR), leading to phosphorylation of eIF2 on the alpha-subunit, which would inhibit protein synthesis. However, in the presence of HMB, phosphorylation of PKR and eIF2alpha was attenuated, and this was also observed in skeletal muscle of cachectic mice administered HMB (0.25 g/kg). These results suggest that HMB attenuates the depression of protein synthesis by PIF in myotubes through multiple mechanisms.
Resumo:
Proteolysis-inducing factor (PIF), a tumour-produced cachectic factor, induced a dose-dependent decrease in protein synthesis in murine myotubes, together with an increase in phosphorylation of eucaryotic initiation factor 2 (eIF2) on the alpha-subunit. Both insulin (1 nM) and insulin-like growth factor I (IGF-I) (13.2 nM) attenuated the depression of protein synthesis by PIF and the increased phosphorylation of eIF2alpha, by inhibiting the activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) by induction of protein phosphatase 1. A low-molecular weight inhibitor of PKR also reversed the depression of protein synthesis by PIF to the same extent, as did insulin and IGF-I. Both insulin and IGF-I-stimulated protein synthesis in the presence of PIF, and this was attenuated by Salubrinal, an inhibitor of phospho eIF2alpha phosphatase, suggesting that at least part of this action was due to their ability to inhibit phosphorylation of eIF2alpha. Both insulin and IGF-I also attenuated the induction of protein degradation in myotubes induced by PIF, this effect was also attenuated by Salubrinal. These results suggest an alternative mechanism involving PKR to explain the effect of insulin and IGF-I on protein synthesis and degradation in skeletal muscle in the presence of catabolic factors.
Resumo:
Extensive use of fossil fuels is leading to increasing CO2 concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO2. As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO2 41 Pa e.g. 399 µatm) and CO2 acidified seawater with pH of 7.7 (pCO2 134 Pa e.g. 1318 µatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10 % reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (Two way ANOSIM: Global R = 1) while acidification effects were less pronounced (Global R = 0.518). Significant differences in gene expression patterns (ANOSIM R = 0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO2 treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO2 effect. We found an up regulation of metabolic genes (between 10 to 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23 and 36% in msp130, SM30B, SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na+/K+-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.
Resumo:
It is becoming increasingly apparent that epigenetics plays a crucial role in the cellular response to hypoxia. Such epigenetic regulation may work hand in hand with the hypoxia-induced transcription factor (HIF) family or may contribute in a more substantial way to the maintenance of a hypoxia-adapted cellular phenotype long after HIF has initiated the immediate response pathways. In this article we discuss the current research implicating epigenetic mechanisms in the cellular response to hypoxic environments. This includes; the role of epigenetics in both the stabilization and binding of HIF to its transcriptional targets, the role of histone demethylase enzymes following direct HIF transactivation, and finally, the impact of hypoxic environments on global patterns of histone modifications and DNA methylation.
Resumo:
C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including antiinflammatory and anti-tumor activities. In this study, we expressed the beta-subunit of C-PC (ref to as C-POP) in Escherichia coli. We found that the recombinant C-PC/beta has anti-cancer properties. Under the treatment of 5 mu M of the recombinant C-PC/beta, four different cancer cell lines accrued high proliferation inhibition and apoptotic induction. Substantially, a lower response occurred in non-cancer cells. We investigated the mechanism by which C-PC/beta inhibits cancer cell proliferation and induces apoptosis. We found that the C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Under the treatment of the C-PC/beta, depolymerization of microtubules and actin-filaments were observed. The cells underwent apoptosis with an increase in caspase-3, and caspase-8 activities. The cell cycle was arrested at the G0/G1 phase under the treatment of C-PC/beta. In addition, the nuclear level of GAPDH decreased significantly. Decrease in the nuclear level of GAPDH prevents the cell cycle from entering into the S phase. Inhibition of cancer cell proliferation and induction of apoptosis may potentate the C-POP as a promising cancer prevention or therapy agent. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
To express and product a fluorescent antioxidant holo-alpha-phycocyanin (PC) of Spirulina platensis (Sp) with His-tag (rHHPC; recombinant holo-alpha-phycocyaninof Spirulina platensis with His-tag) in 5-l bench scale. A vector harbouring two cassettes was constructed: cpcA along with cpcE-cpcF in one cassette; ho1-pcyA in the other cassette. Lyases CpcE/F of Synechocystis sp. PCC6803 (S6) could catalyse the 82 site Cys in apo-alpha-PC of Sp linking with bilin chromophores, and rHHPC was biosynthesized in Escherichia coli BL21. The constant feeding mode was adopted, and transformant reached the biomass of rHHPC up to 0.55 g l(-1) broth in 5-litre bench scale. rHHPC was purified by Ni2+ affinity column conveniently. The absorbance and the fluorescence emission spectra of rHHPC had lambda(max) at 621 and 650 nm, respectively. The IC50 values of rHHPC were 277.5 +/- 25.8 mu g ml(-1) against hydroxyl radicals and 20.8 +/- 2.2 mu g ml(-1) against peroxyl radicals. Combinational biosynthesis of rHHPC was feasible, and the constant feeding mode was adopted to produce good yields of rHHPC. Fluorescent rHHPC with several unique qualitative and quantitative features was effective on scavenging hydroxyl and peroxyl radicals. A potent antioxidant rHHPC was co-expressed, produced and characterized for nutritional and pharmacological values, which would help to develop phycobiliproteins' applications in their fluorescent and biological activities.
Resumo:
To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.
Resumo:
The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Because GABA(A) receptors containing alpha 2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha 2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine`s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha 2-GABA(A) receptors (alpha 2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha 2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha 2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.
Resumo:
The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.
Resumo:
Meprins are members of the astacin family of metalloproteases expressed in epithelial tissues, intestinal leukocytes and certain cancer cells. In mammals, there are two homologous subunits, which form complex glycosylated disulfide-bonded homo- and heterooligomers. Both human meprin alpha and meprin beta cleave several basement membrane components, suggesting a role in epithelial differentiation and cell migration. There is also evidence that meprin beta is involved in immune defence owing to its capability of activating interleukin-1beta and the diminished mobility of intestinal leukocytes in meprin beta-knockout mice. Here we show for the first time by reverse transcription PCR, immunoblotting and immunofluorescence analyses that meprins are expressed not only in mammals, but also in the zebrafish Danio rerio. In contrast to the human, mouse and rat enzymes, zebrafish meprins are encoded by three genes, corresponding to two homologous alpha subunits and one beta subunit. Observations at both the mRNA and protein level indicate a broad distribution of meprins in zebrafish. However, there are strikingly different expression patterns of the three subunits, which is consistent with meprin expression in mammals. Hence, D. rerio appears to be a suitable model to gain insight into the basic physiological functions of meprin metalloproteases.
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.
Resumo:
The H(+)-K(+)-ATPase alpha(2) (HKalpha2) gene of the renal collecting duct and distal colon plays a central role in potassium and acid-base homeostasis, yet its transcriptional control remains poorly characterized. We previously demonstrated that the proximal 177 bp of its 5'-flanking region confers basal transcriptional activity in murine inner medullary collecting duct (mIMCD3) cells and that NF-kappaB and CREB-1 bind this region to alter transcription. In the present study, we sought to determine whether the -144/-135 Sp element influences basal HKalpha2 gene transcription in these cells. Electrophoretic mobility shift and supershift assays using probes for -154/-127 revealed Sp1-containing DNA-protein complexes in nuclear extracts of mIMCD3 cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that Sp1, but not Sp3, binds to this promoter region of the HKalpha2 gene in mIMCD3 cells in vivo. HKalpha2 minimal promoter-luciferase constructs with point mutations in the -144/-135 Sp element exhibited much lower activity than the wild-type promoter in transient transfection assays. Overexpression of Sp1, but not Sp3, trans-activated an HKalpha2 proximal promoter-luciferase construct in mIMCD3 cells as well as in SL2 insect cells, which lack Sp factors. Conversely, small interfering RNA knockdown of Sp1 inhibited endogenous HKalpha2 mRNA expression, and binding of Sp1 to chromatin associated with the proximal HKalpha2 promoter without altering the binding or regulatory influence of NF-kappaB p65 or CREB-1 on the proximal HKalpha2 promoter. We conclude that Sp1 plays an important and positive role in controlling basal HKalpha2 gene expression in mIMCD3 cells in vivo and in vitro.