972 resultados para Photosystem II reaction center
Resumo:
We suggest a method of studying coherence in finite-level systems coupled to the environment and use it for the Hamiltonian that has been used to describe the light-harvesting pigment-protein complex. The method works with the adiabatic states and transforms the Hamiltonian to a form in which the terms responsible for decoherence and population relaxation are separated out. Decoherence is then accounted for nonperturbatively and population relaxation using a Markovian master equation. Almost analytical results can be obtained for the seven-level system, and the calculations are very simple for systems with more levels. We apply the treatment to the seven-level system, and the results are in excellent agreement with the exact numerical results of Nalbach et al. Nalbach, Braun, and Thorwart, Phys. Rev. E 84, 041926 (2011)]. Our approach is able to account for decoherence and population relaxation separately. It is found that decoherence causes only damping of oscillations and does not lead to transfer to the reaction center. Population relaxation is necessary for efficient transfer to the reaction center, in agreement with earlier findings. Our results show that the transformation to the adiabatic basis followed by a Redfield type of approach leads to results in good agreement with exact simulation.
Resumo:
Background: In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results: We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion: This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.
Resumo:
Multi-step electron tunneling, or “hopping,” has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.
The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan “wire.” The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.
Resumo:
This dissertation describes efforts to model biological active sites with small molecule clusters. The approach used took advantage of a multinucleating ligand to control the structure and nuclearity of the product complexes, allowing the study of many different homo- and heterometallic clusters. Chapter 2 describes the synthesis of the multinucleating hexapyridyl trialkoxy ligand used throughout this thesis and the synthesis of trinuclear first row transition metal complexes supported by this framework, with an emphasis on tricopper systems as models of biological multicopper oxidases. The magnetic susceptibility of these complexes were studied, and a linear relation was found between the Cu-O(alkoxide)-Cu angles and the antiferromagnetic coupling between copper centers. The triiron(II) and trizinc(II) complexes of the ligand were also isolated and structurally characterized.
Chapter 3 describes the synthesis of a series of heterometallic tetranuclear manganese dioxido complexes with various incorporated apical redox-inactive metal cations (M = Na+, Ca2+, Sr2+, Zn2+, Y3+). Chapter 4 presents the synthesis of heterometallic trimanganese(IV) tetraoxido complexes structurally related to the CaMn3 subsite of the oxygen-evolving complex (OEC) of Photosystem II. The reduction potentials of these complexes were studied, and it was found that each isostructural series displays a linear correlation between the reduction potentials and the Lewis acidities of the incorporated redox-inactive metals. The slopes of the plotted lines for both the dioxido and tetraoxido clusters are the same, suggesting a more general relationship between the electrochemical potentials of heterometallic manganese oxido clusters and their “spectator” cations. Additionally, these studies suggest that Ca2+ plays a role in modulating the redox potential of the OEC for water oxidation.
Chapter 5 presents studies of the effects of the redox-inactive metals on the reactivities of the heterometallic manganese complexes discussed in Chapters 3 and 4. Oxygen atom transfer from the clusters to phosphines is studied; although the reactivity is kinetically controlled in the tetraoxido clusters, the dioxido clusters with more Lewis acidic metal ions (Y3+ vs. Ca2+) appear to be more reactive. Investigations of hydrogen atom transfer and electron transfer rates are also discussed.
Appendix A describes the synthesis, and metallation reactions of a new dinucleating bis(N-heterocyclic carbene)ligand framework. Dicopper(I) and dicobalt(II) complexes of this ligand were prepared and structurally characterized. A dinickel(I) dichloride complex was synthesized, reduced, and found to activate carbon dioxide. Appendix B describes preliminary efforts to desymmetrize the manganese oxido clusters via functionalization of the basal multinucleating ligand used in the preceding sections of this dissertation. Finally, Appendix C presents some partially characterized side products and unexpected structures that were isolated throughout the course of these studies.
Resumo:
Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18 degrees S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.
Resumo:
蓝藻分子生物学的飞速发展已使其成为生物学的前沿。近几年来,以蓝藻为宿主的基因工程发展迅速,使转基因蓝藻已有希望制备药物或处理环境问题。但迄今为止,国内外用蓝藻表达外源基因的表达效率都不高。为了使转基因蓝藻在应用上产生较好的社会效益和经济效益,必须进一步提高外源基因在蓝藻中的表速效率,以及提高光合效率、加速生长。 本研究用人肿瘤坏死因子a(Human Tumor Necrosis Factora简称hTNFa)作为外源目的基因。它是由巨噬细胞和单核细胞受到刺激后产生的一种多功能蛋白质细胞因子。hTNFcc多种生物学效应并作为信号传导体,其中最引人注目的是它对肿瘤组织和肿瘤细胞直接地、特异性和广谱性地杀伤作用,极有希望制成抗癌剩的天然因子之一。但是用大肠杆菌得到的重组产物需要严格纯化,通常用于静脉注射,但由于毒副作用大,十几年来国内外一直停留在临床实验阶段,我们研究组建议用蓝藻为宿主表达hTNFa制备口服剂,来减缓毒副作用,已经得到了转基因鱼腥藻,并测得产物具有抑瘤的生物学活性。但是表达效率一直不高,并且它的表达对蓝藻生长有些抑制。 由于蓝藻是原核生物,基因的表达调控主要是在转录水平和翻译水平。因此,寻找在蓝藻中高效的启动子,改变SD序列的结构是提高外源基因在蓝藻中表达效率的有效手段。本研究将连有不同SD序列的TNFa cDNA克隆到穿梭表达载体pRL-489的启动子(PpsbA)下游,构建2个鱼腥藻7120的穿梭表达载体(pMD-489-TNF1,2),通过三亲接合转移法分别导八鱼腥藻7120细胞。用放射免疫法定量分析TNFa在转基因蓝藻中的表达效率。结果表明,有效地提高了TNFa在鱼腥藻7120中的表达。TNFa的表达量占总可溶性蛋白的2.1 - 2.9%和0.15%,表达效率分别提高到原来的21 - 29倍和1.5倍。 在培养转基因鱼腥藻中,观测到它们在形态和生理上都发生了变化,这反应了TNFcc基因的转入和表达对宿主光合作用的影响。 光学显微镜和扫描电子显微镜的观察发现:转基因鱼腥藻比野生型异形胞数目减少约30%。转入空质粒的营养细胞比野生型略大,转TNFa基因的鱼腥藻异形胞体积明显增加,而营养细胞比正对照和野生型小。到了生长后期,转TNFa因的鱼腥藻营养细胞体积明里增大,多与异形胞相当,有的甚至比异形胞大。转pMD-489-TNFI的鱼腥藻细胞内出现明显的空腔。通过透射电子显微镜的观察发现:转基因藻中的类囊体膜片屡结构更加明显。转基因藻和野生藻的生长曲线的比较表明,转入空质粒pRL-489对宿主的生长几乎没有影响,甚至还略快于野生型;TNFa的表达对细胞的生长有一定副作用,胞内TNFa的含量高时,细胞数增长缓慢,并且平台期时细胞数有一定下降。 从光合作用光强曲线的分析可见,转TNFa因的鱼腥藻有较低的光饱和点,暗示了TNFa的表达可以增强宿主对光的敏感性;同时,TNFa的转入使宿主的呼吸作用加强,几乎比野生型和转空质粒的正对照高一倍,显示了TNFa基因的转入和表达可能给宿主带来更大的代谢负荷;在光饱和点以上,几种藻的真实光合放氧能力大致相同,表明TNFa的表达没有破坏宿主的光合反应中心。 从室温吸收光谱分析可见,转基因蓝藻有相对较高的类胡萝卜素和叶绿素a蓝峰,转TNF谌因的鱼腥藻显示了藻蓝蛋白含量有所降低。因为蓝藻的主要天线色素为藻胆蛋白,藻蓝蛋白相对含量的下降可能与宿主对光更敏感有关。 从低温荧光发射光谱分析可见,转TNFa基因的鱼腥藻7120光系统II能量分配较高。可能是TNFa基因的转入提高了藻胆蛋白的吸收和传递光能的效率。 从叶绿素荧光动力学分析可见,鱼腥藻7120在生长的过程中PSII的活性存在一个变化的过程。TNFa的转入和表达在对数后期提高了宿主的光系统II原初光能转化效率。 从转基因藻光系统I和光系统II光合放氧活性分析与TNFa表达随培养时间变化曲线表明,转TNFcc基因鱼腥藻的光合放氧活性比野生型和正对照高,尤其是显著地提高了宿主的Psn活性。 用自然界中原来不存在的转基因鱼腥藻作上述研究表明:原来只存在于高等、异养的人类和哺乳动物中的TNFa基因,一旦转入最古老的放氧光合生物后,其表达可被调控;同时TNFa的表达又能影响宿主的光合作用。它提高了宿主对光的敏感性、光系统II的活性和对光能的利用率。这似乎都表明TNFa在蓝藻细胞中起信号传导体的作用。而且,这些数据的积累,还有助于我们优化培养条件,提高TNFa的表达效率,为产业化做好准备。
Resumo:
叶片在成长进程中光饱和光合速率持续提高,尽管幼叶光呼吸的测定值较低,但幼叶光呼吸与总光合之比较高。叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片。随着叶片的成长,光下叶片光系统II实际效率增加,而非光化学猝灭下降。幼叶叶黄素总量与叶绿素之比较高,随着叶而积的增加该比值下降;光下,幼叶脱环氧化程度较高。同时,我们也观察到叶片生长初期活性氧清除酶系的活性较高。叶片生长过程中提高的光破坏防御机制与叶片相对含水量呈现很好的负相关,而不是叶片水势。因此,推测叶片生长过程中光破坏防御机制的建立可能与叶片膨压有关。 自然状态下,不同展开程度的叶片均未发生明显的光抑制;但将所柏‘叶片平展并暴露在强光下时幼叶发生明显的光抑制,伴随叶丽积的增加光抑制程度减轻。自然条件下测量叶片角度,观察到在叶片展开过程中叶柄夹角逐渐增加:日动态过程中幼叶的悬挂角随光强增加而明显减小,而完全展丌叶的悬挂角变化幅度很小。叶片角度的变化使实际照射到幼叶叶表的光强减少。推测较强的光ll乎吸、依赖叶黄素循环的热耗散、活性氧清除酶系以及较大的叶角变化可能是自然状态下幼叶未发生严重光抑制和光破坏的原因。 与成熟叶片相比,高温严重地伤害新生叶片光系统IT的结构,并导致最大光化学效率和光系统II活性下降。高温对光系统II的伤害包括供体测和受体测;而进一步的研究和分析表明高温很可能影响放氧复合物活性,从而改变光系统II的结构并最终导致受体测电子传递受阻。叶片生长和光合机构的健全使得光系统II热稳定性逐步增强,因此推测叶片生长过程中光系统II热稳定性的增强可能主要与其放氧复合物结构和功能的完善有关。
Resumo:
近年来有证据证明,光系统II(PS II)反应中心在结构与功能上存在着异质性,它与光舍原初过程、激发能的分配和调节、胁迫因子导致的光合单位的损伤与修复等密切相关。本论文主要研究了高温胁迫诱导PS II及其异质性的变化,以及人工电子受体与PS II还原侧异质性电子传递的关系.根据研究需要,建立了精确测定无活性PS II中心相时含量的软件和方法,圆满完成了本研究任务。此外,也参加了新的非调制式动力学荧光计的研制及其软件的编写. 以下是本论文的主要结果: 1.用N80-BASIC语言结合汇编语言重新编写了本室快速(ms级)叶绿素动力学荧光计的测控程序,使快速荧光上升曲线的采样速度提高了一个数量级(达到100μS/点),可对Fo、Fi等关键荧光参数进行精确测定,为无活性PS II中心相对含量的准确测定奠定了基础.新研制的荧光计的软件用C语言编写,可在IBM PC兼容机上运行,采样速度最快可达25μs/点,对Fo和Fi等参数的测定更加可靠和精确.新荧光计从软、硬件两方面进行了彻底地更新,具有高信噪比、高响应、高精度、低功耗等优点,其性能己达到国际同类产品的先进水平. 2.高温胁迫诱导小麦类囊体膜吸收光谱的变化,结果显示40℃-50℃20分钟以内的高温胁迫导致681nm的吸收峰下降,同时引起663nm的吸收峰增加,表明高温胁迫引起部分叶绿素蛋白复合体的破坏和游离的叶绿素分子的增多.在更严重的高温胁迫下(55℃5分钟以上),体内游离的叶绿素分子(△A663)本身也遭到进一步的降解. 3.小麦类囊体膜低温( 77K)荧光光谱的分析。结果证实温和的高温胁迫(40℃20分钟以内)可导致激发能更多地从PS II向光系统IcPsi)分配,而更严重的高温胁迫(45℃- 55℃20分钟以内)对PS II和PS I的叶绿素蛋白复合体(F684和F736)均有破坏作用. 4.高温胁迫诱导小麦叶片荧光诱导动力学、荧光猝灭及其荧光参数的变化的研究.结果表明,高温胁迫首先导致有效量子产量(E.Y.)的下降,胁迫作用进一步加强导致最适量子产量(0.Y.)下降,而对光化学猝灭qP的影响较晚.这说明和PS II电子受体侧的电子传递和与二氧化碳固定有关的酶系统对高温胁迫极为敏感.其次,PS II放氧系统的损伤也早于PS II原初反应中心的失活.同时,在自然界条件下,存在着高温和高光强对植物的加强协同的光抑制和破坏作用. 5.在研究高温胁迫诱导荧光动力学及其参数变化的基础上,提出测定和计算高温胁迫的植物样品中无活性PS II中心相对含量的合理方法.认为在高温胁迫导致可变荧光( Fv)猝灭的情况下,应以Fvi(Fvi=Fi-Fo)对室温对照的可变荧光(FVCK)的比值作为计算无活性PS II中心相对含量的指标(Fvi/FVCK).我们在弱激发光下测得正常的小麦和菠菜的无活性PS II中心的相对含量分别为0.155±0.011和0.094士0.010. 6.高温胁迫诱导有活性和无活性PS II中心异质性的相互转化的研究。结果发现50℃以下小于10分钟的处理,对PS II有活性和无活性中心的比值无明显影响:而经过50℃和55℃高温处理5-10分钟,有活性PS II中心才明显向无活性中心转化并发现这一转化过程发生在Fo己明显增加和Fv明显猝灭之后,也就是说它迟于高温胁迫对PS II天线色素蛋白复合体( LHCII)与PS II反应中心结合的破坏以及对放氧侧的损伤. 7.高温胁迫后的室温恢复期中有活性和无活性PS II中心相互转化的研究.发现在高温胁迫不太严重时(如50℃1分钟),无活性PS II中心的含量降至对照的70%,在随后室温60分钟恢复过程中继续降为50%。而Psn氧化侧的活性在此过程中可以得到部分恢复。高温胁迫进一步加强(如55℃5分钟和55℃10分钟)后,无活性PS II中心数目在随后的60分钟室温恢复期中,从恢复开始时为对照的130%和150%继续增加到240%和290%,且有加速转化的趋势。这说明高温胁迫诱导PS II还原侧异质性中心的转化除包含一个快速、直接的机制外,还启动了某种间接转化的机制. 8.对DMQ和DCBQ两种人工电子受体对有活性和无活性PS II中心的作用提出了不同见解。Cao和Govindjee(1990)认为DMQ(>20μmoI.L-1)只接受有活性PS II中心的电子,而DCBQ(>15, μmoLL-1)可完全接受有活性和无活性两种PS II中心的电子。但Lavergne等(1993)认为DCBQ不能接受无活性Psn中心的电子.我们用Stern-Volmer猝灭公式对我们的实验结果进行了分析,结果表明DMQ在较高浓度下(如120μmoI.L-1)才可完全接受有活性PS II中心的电子.但DCBQ的浓度在比Cao等几乎高出一个数量级( 120μmoI.L-1)的情况下,也只接受部分无活性PS II中心的电子( 40%)。另外我们发现,DMQ和DCBQ对Fm的猝灭不是随猝灭剂浓度的增加呈线性关系,而是一条近似饱和曲线,说明它至少包括两种以上不同的猝灭机制. 9.Mg2+诱导PS II异质性(Cα/Cβ)的研究。我们小组发现Mg2+诱导的chl a荧光增强动力学曲线包含Cα和Cβ两个指数成分,说明Mg2+在抑制激发能满溢,调节激发能向有利于PS I1分配的过程中存在异质性。其中Cβ比Cα具有更长的迁移寿命、更低的活化能和Mg2+半饱和浓度.这些说明Cβ比Cα更有可能在体内生理条件下发生迁移,从而在两个光系统之间起调节激发能分配的作用. 10.提出了高温胁迫诱导PS II异质性中心相互转换的可能模型.高温胁迫导致PS II异质性的转化包括几个步骤:有活性的α型PS II专荧光猝灭态的PS II专有活性的β型PS II专无活性的β型PS II专破坏了的PSⅡ.前两种转化一般具有可逆性.当高温胁迫进一步加强后,转化失去可逆性,在胁迫去除后,有活性PS II中心可继续向无活性中心转化,后者还有可能进一步受到破坏。
Resumo:
应用改进DEAE-Toyopearl 650S阴离子交换柱层析从高等植物菠菜(Spinacia oleracea)中分离纯化了核心天线复合物CP43和CP47。并对它们的纯度和完整性色素种类和含量,以及色素分子的结合状态进行了研究并对色素分子间的能量传递机制进行了讨论。结果如下: 1、HPLC检测结果表明:纯化的CP43和CP47均只含Chla和β-Car两种色素分子,并且,平均每分子CP43多肽含19-20分子Chla和4-5分子β-Car;而平均每分CP47则含20-21分子Chla和3-4分子β-Car。 2、以436nm和480nm激发光激发样品得到的CP43和CP47的低温荧光发射光谱的最大荧光发射峰分别位于683nm和693nm。进一步发现,CP43和CP47,在相同条件下分别以436nm和480nm激发光激发样品得到的低温荧光发射光谱经归一化后几乎完全重叠,而且400-500nm波长范围内的激发光扫描得到的三维低温荧光发射光谱沿激发轴具有较好的对应关系,表明纯化的CP43和CP47都具有较高的完整性。 3、纯化的CP43和CP47的吸收光谱的红区最大吸收峰分别位于671nm和674nm。该光区的导数光谱均分辨出偏蓝区和偏红区两个子峰,CP43的这两个子峰分别位于669nm和682nm;而CP47的两个子峰则分别位于669nm和680nm。进一步用包含这两个子峰的高斯解析参数对红区最大吸收峰进行拟合,结果证明,拟合的曲线与实测曲线几乎完全吻合,这表明,CP43和CP47均至少包含两种不同状态的Chla分子。 3.1应用不同的变性温度处理CP43,发现随变性温度的不断提高,其红区最大吸收峰的峰值逐渐减小,四阶导数光谱分辨出的两个子峰同时减小,但差光谱显示:随处理温度的不断提高,这两个组分峰值的变化并不同步进行,较低温度范围内(55℃以下)682nm吸收峰下降明显,而较高温度范围内(55℃以上),669nm吸收峰下降明显。 同时,随处理温度不断提高CP43脱辅基蛋白的结构也在不断发生变化,其变化过程明显表现出两个跃变阶段。这两个跃变阶段分别出现在40~50℃范围内和55~60℃范围内,恰与吸收光谱两个组分峰变化的转变过程相一致。这证明,CP43中分别位于669nm和682nm的不同的色谱组分即代表两种不同结合态的Chla分子,分别简称为“CP43-669”和“CP43-682”。它们在色素蛋白复合物中所处的环境不同,因而对蛋白质结构的依赖性不同,前者更高地依赖于蛋白复合物的整体构象,而后者则主要依赖于蛋白质的二级结构。 3.2 经不同的变性温度处理的CP47,其红区最大吸收峰的峰位逐渐蓝移,而吸收峰值无明显的变化,只有当处理温度提高到65℃以后,蓝移后的吸收峰值(669nm)才开始明显减小;四阶导数光谱表现为680nm吸收峰的信号逐渐下降669nm的吸收信号逐渐明显;处理减对照差光谱只观察到680nm吸收值的逐渐减少,而几乎观察不到669nm吸收值的变化。同时,随变性温度的不断提高,CP47的脱辅基蛋白的结构也发生相应的变化与CP43不同,蛋白结构变化最大的温度范围为60℃~65℃之间,但同CP47的峰位蓝移、导数光谱中680nm信号的减小,以及差光谱中680nm吸收值的减小相一致。由此认为,同CP43一样,CP47的吸收光谱中分辨出的分别位于669nm和680nm处的两个不同光谱组分亦分别代表两种不同结合状态的Chla分子,分别简称为“CP47-669”和“CP47-680”,与CP43中的相应组分对应,它们处于不同的蛋白环境中,从而对蛋白质结构变化的依赖性不同。 3.3 CP43和CP47的CD光谱表现出明显的正负双峰,表明色素分子间存在较强的激子相互作用。随变性温度的不断提高,正负CD双峰的信号逐渐减弱,变化过程与脱辅基蛋白结构的变化以及CP43-682的变化相一致,表明色素分子间的激子相互作用更高依赖于CP43-682和CP47-680。并认为CP43-682和CP47-680可能以二聚体或多聚体的形式存在,并且二聚体或多聚体的形成依赖于蛋白天然构象。而CP43-669和CP47-669则以单体的形式位于蛋白结构中相对伸展的区域。并提出:在CP43-682以CP47-680分子之间,激发能主要以激子偶合机制进行而在CP43-669,CP47-669分子间及CP43-669至CP43-682间,CP47-669至CP47-680之间激发能则主要以Foster机制进行。 4、以488nm激发光得到的CP43和CP47的共振拉曼光谱都具有全反式构型类胡萝卜素分子的四个典型特征峰由此认为CP43和CP47中的β-Car分子亦具有全反式构型;与溶于丙酮抽体物中的β-Car分子相比较,CP43和CP47中的β-Car分子的共振拉曼光谱中具有较强的960cm~(-1)的拉曼峰,表明,CP43和CP47中的β-Car分子具有扭曲的构象。 应用经归一化后的吸收光谱与荧光激发光谱相比较的办法发现CP43和CP47中存在β-Car分子和Chla分子间的能量传递其能量传递效率分别为29.8~29.9%和52.3~56.9%。这表明,在正常条件下,CP47中β-Car分子和Chla分子间的能量传递效率远大于CP43。此外,当选用蛋白结构变化最明显的热变性温度处理样品后,发现,不论CP43还是CP47中β-Car与Chla分子间的能量传递效率大大降低,表明,这两种色素分子间的能量传递严格依赖于蛋白复合物的天然构象,并认为,正常条件下,CP43和CP47内β-Car与Chla分子间的空间距离较近,可能不大于10A,CP43和CP47相比较,CP47内这两种色素分子间的距离更近。并进一步提出,在CP43和CP47中,β-Car到Chla分子间的能量传递最大可能以Dexter的电子交换机制进行。
Resumo:
"盐渍土是一种分布广泛的土壤类型,盐渍土中生长的植物如何响应夏季较常出现的高温生长环境一直很少受到人们关注,我们以5种不同耐盐类型的植物为材料,研究其盐适应后光合作用的耐热性,并对耐热性原因做了进一步探讨,主要研究结果如下: 1. 用0、100、200、400 mM NaCl处理盐生植物碱蓬、滨藜、大莳萝蒿;用0、50、100、150 mM NaCl处理耐盐的甜土植物小麦和棉花。盐处理后碱蓬的整株干重变化不显著,而其他四种植物随着盐浓度的升高,整株干重逐渐减小,说明5种植物耐盐能力不同。盐处理对所有实验植物的光系统II最大光化学效率(Fv/Fm)、反应中心能量捕获效率(Fv′/Fm′)、实际量子产率(ΦPSII)、光化学猝灭系数(qP)等影响不显著;但对碳同化有明显影响。碱蓬盐处理后虽然气孔导度和胞间CO2浓度稍有下降,但CO2同化速率却高于对照;其他4种植物盐处理后CO2同化速率都明显降低,同时伴随着气孔导度和胞间CO2浓度的显著下降。以上结果表明盐适应植物的PSII并没有受到盐胁迫伤害,盐胁迫抑制这4种植物光合作用的一个重要原因可能是气孔限制。 2. 高温处理(36~48℃)结果显示,在42℃或45℃以上极端高温下,非盐处理植物的CO2同化速率下降至很低甚至为零,而盐适应植物仍保持一定强度的CO2同化能力。高温处理后盐适应植物的Fv/Fm、Fv′/Fm′、qP、ΦPSII下降幅度也都小于非盐处理植物。不同程度的盐胁迫都能诱导5种植物的光合作用对热胁迫产生抗性,说明植物在适应盐胁迫过程中都能启动一些耐逆机制,使得这5种植物的光合作用在获得耐盐性的同时也获得了对热胁迫的抗性。 3. 室温下(30℃)碱蓬盐处理后,过氧化氢酶、单脱氢抗坏血酸还原酶、抗坏血酸过氧化物酶和谷胱甘肽还原酶活性等显著下降,超氧化物岐化酶活性变化不大,只有脱氢抗坏血酸还原酶活性显著增加;抗坏血酸和谷胱甘肽含量也显著下降。42℃高温处理后,碱蓬叶片的抗氧化系统的酶活性和抗氧化小分子物质含量变化与室温时变化类似。而且盐处理碱蓬叶片的膜脂过氧化产物MDA含量无论在室温下还是42℃处理后都显著高于非盐处理。盐处理后,碱蓬的抗氧化能力没有提高,推测盐处理叶片抗氧化能力大小不是决定其光合作用耐热性主要因素。 4. 在菠菜PSII颗粒的保存液中加入不同浓度的甜菜碱、脯氨酸和蔗糖(0~800 mM),测定PSII最大光化学效率(Fv/Fm)结果表明,有机相容性溶质的积累能显著缓解盐(400 mM和800mM NaCl)、热(30℃和40℃)及盐热胁迫共同作用对菠菜PSII颗粒的伤害。而盐处理后碱蓬、滨藜和莳萝蒿叶片中脯氨酸和可溶性糖含量都显著升高,说明盐胁迫诱导的有机相容性溶质的积累可能在盐适应植物光合作用的耐热性中起重要作用。 5. 提取室温下(30℃)或42℃高温处理碱蓬叶片的叶绿体和类囊体膜,用30℃、35℃、40℃、45℃、50℃水浴进行热处理,结果显示:用室温下或42℃高温处理的碱蓬盐适应叶片提取的叶绿体和类囊体经45℃以上水浴温度处理后,其PSII最大光化学效率(Fv/Fm)和放氧活性都显著高于非盐处理碱蓬叶片的叶绿体和类囊体;用42℃高温处理碱蓬叶片提取的叶绿体和类囊体热稳定性显著高于室温下碱蓬的叶绿体和类囊体。表明盐胁迫和热胁迫类似,都能在类囊体水平上诱导某些保护物质,增加植物PSII的耐热性。 6. 分析类囊体膜膜脂组成,结果显示,盐处理后碱蓬的类囊体膜脂中的饱和脂肪酸含量减少,不饱和脂肪酸含量增加;MGDG和DGDG含量变化不明显,而PG含量显著下降;42℃高温处理后碱蓬的类囊体膜脂组成也有类似的变化规律。盐诱导的碱蓬类囊体膜脂成分的变化可能不影响盐适应植物光系统的耐热性。"
Resumo:
光合水氧化是地球上最重要的生化过程之一。这个过程是在位于类囊体囊腔侧的放氧复合物中完成的。光系统II中的锰簇催化中心在四个连续的氧化还原反应作用下将水裂解为四个质子和氧气。水氧化的催化中心含有四个锰、一个钙离子、一至两个氯离子和一个具氧化还原活性的YZ(D1-Y161)。在光系统II的功能性组装过程中,氧合催化中心的形成是在一个被称作光组装的作用下完成的。光组装是无机锰、钙、氯离子与光系统II蛋白结合并在光驱动下氧化形成功能性放氧中心的过程。到目前为止,放氧复合物(OEC)的结构及水氧化的机理仍不清楚,光组装的研究工作对于阐明放氧复合物的结构与功能具有重要的理论和实际意义。 本论文研究了一系列具有不同配位环璄的锰化合物与去锰的PSII的光组装过程, 同时研究了稀土离子LaCl3和TbCl3及重金属离子Co2+和Ni2+对PSII 放氧活性及光组装的影响。主要结果如下: 1. 选择了咪唑氮配位的锰化合物和非咪唑氮配位的锰化合物与去锰的PSII 颗粒进行重组, 发现化合物中锰的配位结构与其恢复电子传递能力和放氧活性之间有一定关系。 研究结果表明,锰中心为锰-咪唑氮连接的化合物能够有效地恢复去锰PSII的电子传递能力和放氧活性;而非咪唑氮配位的锰化合物恢复电子传递和放氧活性的能力都相应较低甚至没有,由此推测,咪唑氮为放氧中心锰簇的一个配体。 2. 选择了两个不同价态的二核锰化合物和一个带氧桥的三核锰化合物与去锰的PSII 颗粒进行重组。 研究结果表明,三核锰化合物表现出比另外两个二核锰化合物更强的恢复放氧活性的能力,但其作为电子供体的能力比另外两个化合物要差。由此可推测,影响锰化合物恢复电子传递和放氧活性效率的因素是不同的。另外, 三核锰化合物在重组过程中对CaCl2非常敏感,我们推测锰化合物中的羧基与Ca2+之间存在相互作用,而这种作用有助于锰的配位进而促进光组装。三个化合物重组放氧复合物能力的大小顺序为:Mn3(III)锰化合物>Mn(III)Mn(III)锰化合物> Mn(III)Mn(IV)锰化合物。 3. 研究了LaCl3、 TbCl3 对光系统II放氧复合物光组装的影响。研究表明,在光组装过程中,两种稀土离子La3+和Tb3+对光系统II的光组装有很强的抑制作用,这种作用很大程度上依赖于Ca2+的存在,两种稀土离子在Ca2+结合位点是一个混合型竞争抑制剂。 另外,在10 mmol/L Ca2+存在时,抑制50%的光组装活性所需的稀土离子浓度比抑制50%功能性PSII的放氧活性所需的稀土离子浓度小约10倍,这对理解稀土离子对光合作用的影响具有重要的理论意义。 4.本文研究了Ni2+和Co2+两种金属离子对光系统II膜蛋白复合体结构与功能的影响。结果表明,毫摩尔级Ni2+和Co2+可以使完整的光系统II和去除17 kDa、23 kDa外周蛋白的光系统II的放氧活性被一定程度地抑制,而且对后者的抑制作用更强,在上述两种情况下,CaCl2可使抑制作用减轻。两种金属离子对给体侧的完整性有一定影响:5 mmol/L金属离子存在的时,可使17 kDa蛋白解离,10 mmol/L的金属离子存在时可使17 kDa、 23 kDa蛋白解离。两种金属离子在光组装过程中对Mn、Ca的组装无明显的影响。
Resumo:
Cyt b-559是光系统II反应中心的成分之一,它由亚基和亚基组成的。在Cyt b-559中,血红素辅基与两个亚基中的组氨酸连接成有功能的蛋白,并维持PSII的功能稳定性。前人曾将与血红素相连的His突变,导致Cyt b-559功能和PSII稳定性的丧失。基于此研究,本文采用定点突变技术,将亚基中与His23位置最近的上游氨基酸Arg18分别用Gly和Glu取代,下游氨基酸Ser24用Phe取代,获得了衣藻Cyt b-559的突变体。对突变体的分析,有以下新结果:突变体都能进行光合自养,但无论在异养培养基上还是自养培养基上,和对照相比,其生长速度非常缓慢; PSII的活性分析,表明PSII的放氧活性为野生衣藻细胞的50%~80%, Fv/Fm 的荧光参数为40%~70%;对突变体进行强光(1000μE•m-2•s-1)照射,10min后,其放氧活性都降低为0,而野生型衣藻还保持35%的活性;提取类囊体膜蛋白,进行SDS-PAGE电泳和Western-blotting分析,显示突变体的膜蛋白与对照无显著差异。这些结果说明对围绕血红素环境的固有氨基酸的改变,虽然并没有明显影响类囊体膜蛋白的表达和组成,但是却影响了衣藻细胞的生长和PSII的活性,增加了衣藻细胞对强光的敏感性,降低了衣藻细胞自身的光保护能力。这说明靠近血红素配位环境的氨基酸Arg和Ser,尤其是Arg,对Cyt b-559的功能维持不可缺少,对于维持PSII的活性也很重要。
Resumo:
磷脂酰甘油(phosphatidylglycerol, PG)是类囊体膜(也叫光合膜)中唯一的一种磷脂。在蓝藻中,PG的合成途径为:磷脂酸(phosphatidic acid, PA)胞嘧啶双磷酸-二酰基甘油 (cytidine diphosphate diacylglycerol, CDP-DAG) 磷酸磷脂酰甘油 (phosphatidylglycerol phosphate, PGP)PG。其中最后一步反应是由PGP去磷酸化而生成PG,催化该反应的是PGP磷酸酶。然而迄今为止,PGP磷酸酶还没有在蓝藻和高等植物中得到克隆和鉴定。本工作在鱼腥藻Anabaena sp. PCC7120中通过将一个可能编码PGP磷酸酶的基因(alr1715)进行突变,获得缺失PG的突变体。与野生型相比,该突变体PG的含量降低了30%左右。突变后的蓝藻藻丝发黄、生长缓慢,叶绿素含量降低。整体细胞的光合作用活性、光系统II(photosystem II,PSII)的放氧活性以及PSII反应中心的光能转化效率显著下降,传递给PSII的激发能减少。
Resumo:
本文主要研究了一系列具有不同配位环璄的锰化合物与去锰PSII颗粒的光组装过程;其次,应用太赫兹时域光谱技术对锰稳定蛋白PsbO蛋白的结构与功能进行了研究。主要结果如下: 1. 选择了一组单核、锰中心原子为二价、与羧基氧和氮配位的锰化合物与去锰光系统II颗粒进行了重组研究。研究结果表明,锰化合物中锰原子和氮原子的配位连接是影响电子传递恢复和放氧复合物重组效率的重要因素。锰化合物中锰原子与氮原子的配位,促进了锰原子与PSII脱辅基蛋白上的氨基酸残基进行光配位。33 kDa蛋白的加入显著提高光组装放氧活性,33 kDa蛋白的柔性构象有助于锰簇接受体积大的分子,并提高其稳定性,从而促进PSII反应中心锰簇的光组装。 2. 选择了一组拥有相同配体、锰中心原子价态不同的锰化合物与去锰PSII 颗粒进行重组。三个锰价态为+2,+3,+4价的锰化合物均表现出较高的恢复电子传递和放氧活性的能力,但锰与配体氧原子共价连接的锰化合物恢复电子传递和放氧活性的能力的很差,Mn-O连接阻碍WOC的重组。研究结果表明,锰化合物恢复电子传递活性和放氧活性的能力也受其中锰原子的价态及其它结构因素的影响。锰价态较低的锰化合物比锰价态较高的锰化合物更容易向PSII反应中心提供电子。锰化合物恢复电子传递和放氧活性的因素是不同的。锰化合物作为有效电子供体的效率与其螯合环数成反比,但配体的大小不是影响锰化合物重组放氧活性的主要因素。 3. 应用太赫兹时域光谱技术结合荧光光谱技术,研究了锰稳定蛋白PsbO在与金属离子作用及单个氨基酸被修饰后其构象变化和低频振动模的变化。实验结果显示,该蛋白上唯一的色氨酸对整个蛋白构象至关重要,它的改变引起整个蛋白分子低频振动模发生明显改变。此外,太赫兹时域光谱结果显示,PsbO可能含有钙结合位点。太赫兹时域光谱技术在研究蛋白构象变化,尤其是金属离子诱导的构象变化方面是相当灵敏的。
Resumo:
光系统II(PSII)是叶绿体类囊体膜上电子传递链中第一个色素蛋白复合体,由20多个蛋白亚基组成。它催化光驱动的水的裂解和醌的氧化。由于其结构的复杂性,PSII的生物发生和组装是核基因与叶绿体基因编码的蛋白以一定次序多步骤合成、组装的复杂过程,并需要大量的核基因编码的调节组装因子的参与。分离、鉴定拟南芥中这些核基因编码的叶绿体蛋白并研究它们的作用机制有助于我们认识高等植物PSII复合物组装和功能调控的分子机理。因此,我们从T-DNA插入的拟南芥突变体库中筛选到PSII突变体lpa2(low photosystemII accumulation),对LPA2蛋白调控光系统II复合物组装的功能进行了研究,并进一步探讨了LPA2和其他调节因子协同作用参与PSII组装的模式。 突变体lpa2具有高叶绿素荧光表型,与野生型相比生长量、色素含量均显著降低。蛋白免疫印记发现在lpa2突变体中光系统II复合物的累积量明显降低,仅有野生型的30%左右,而其他复合物的含量变化不大。核酸杂交和与多聚核糖体结合的检测表明光系统II亚基在转录及翻译启始水平没有受到影响。拟南芥叶片蛋白标记实验证明在突变体中CP43的合成量明显降低而其他光系统II主要蛋白CP47, D1 和 D2的合成正常,但相对于野生型这些蛋白的周转速率加快。在突变体中,新合成的蛋白亚基可以组装进入光系统II复合物,但新合成的CP43蛋白组装效率降低。以上的结果表明LPA2对光系统II的正常组装起着重要的作用,LPA2的缺失导致CP43不能有效组装进入光系统II,从而引起其他核心蛋白周转加快,光系统 II复合物累积量降低,最终植株光合效率降低。 基因克隆和蛋白定位分析表明LPA2基因编码一个内在的类囊体膜蛋白,但并不是光系统II的亚基组分。进一步采用酵母双杂分析证实了LPA2蛋白与光系统II核心蛋白CP43有相互作用,而与中心蛋白D1和D2没有相互作用。此外实验还表明LPA2蛋白与参与类囊体膜生物发生有关的Alb3蛋白有相互作用。因此LPA2可能是与Alb3形成复合物来协助CP43有效的整合进入光系统II。 另外,我们实验室已鉴定,LPA3,LPA4也是分别特异地参与CP43和D1组装的光系统II分子伴侣。LPA2,LPA3基因共同缺失会使幼苗不能光合自养而致死,因而LPA2和LPA3共同相互作用促进CP43的组装。体内和体外实验证明LPA2,LPA3和LPA4都和Alb3相互作用,而参与D1组装的分子伴侣LPA1不和Alb3以及上述这些伴侣因子作用。因此,Alb3 很有可能与LPA2、LPA3和LPA4形成多蛋白复合物在D1蛋白合成之后的组装过程中起作用。这些结果表明光系统II多亚基复合物组装是多步骤的,并通过一个精确复杂的调控网络确保复合物的有效组装以及功能行使。