983 resultados para Phosphorus uptake efficiency
Resumo:
We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in quasi-equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. We also find that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extra-tropics, caused both by changes in wind forcing, and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics, a significant part of which occurs because of changes in horizontal advection in extra-tropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, due to increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.
Resumo:
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.
Resumo:
Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (−AMF) addition of unsterilized field soil. After 9–10 weeks, half the pots received 15 mg P kg−1 of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant-available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ∼0.2–0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.
Resumo:
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.
Resumo:
Background and Aims Ptilotus polystachyus (green mulla mulla; ptilotus) is a short-lived perennial herb that occurs widely in Australia in arid and semi-arid regions with nutrient poor soils. As this species shows potential for domestication, its response to addition of phosphorus (P) and nitrogen (N) was compared to a variety of the domesticated exotic perennial pasture herb Cichorium intybus (chicory), ‘Puna’. Methods Pots were filled with 3 kg of an extremely nutrient-deficient sterilized field soil that contained 3 mg kg−1 mineral N and 2 mg kg−1 bicarbonate-extractable P. The growth and P and N accumulation of ptilotus and chicory in response to seven rates of readily available phosphorus (0–300 mg P pot−1) and nitrogen (N) (0–270 mg N pot−1) was examined. Key Results Ptilotus grew extremely well under low P conditions: shoot dry weights were 23, 6 and 1·7 times greater than for chicory at the three lowest levels of P addition, 0, 15 and 30 mg P pot−1, respectively. Ptilotus could not downregulate P uptake. Concentrations of P in shoots approached 4 % of dry weight and cryo-scanning electron microscopy and X-ray microanalysis showed 35–196 mm of P in cell vacuoles in a range of tissues from young leaves. Ptilotus had a remarkable tolerance of high P concentrations in shoots. While chicory exhibited symptoms of P toxicity at the highest rate of P addition (300 mg P pot−1), no symptoms were present for ptilotus. The two species responded in a similar manner to addition of N. Conclusions In comparison to chicory, ptilotus demonstrated an impressive ability to grow well under conditions of low and high P availability. Further study of the mechanisms of P uptake and tolerance in ptilotus is warranted.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In studies on the evaluation of methodologies for the analysis of soil, phosphorus (P) has been the single most studied aspect, due to the complexity of this dynamic element in soil. However, these studies have been limited regarding soil conditions in Paranaa. The present study aimed to evaluate the efficiency of the Mehlich-1, Mehlich-3 and ion exchange resin methods in the evaluation of available P for soybean (Glycine max) in the soils of Paranaa State. Twelve soil samples collected from the upper 0-20 cm were planted with soybean for a period of 42 days in the greenhouse. The ability to extract soil P followed the order of decreasing average amount of extracted P: Mehlich-3 > resin > Mehlich-1. The correlation coefficients between the content of P extracted by Mehlich-1, Mehlich-3 and resin and the amount of P accumulated in the plants were 0.86, 0.90 and 0.93, respectively. Mehlich-1, Mehlich-3 and resin showed similar efficiency in the evaluation of P availability to plants and, under conditions of natural fertility and in soils that had received no application of poorly natural reactive phosphates, can be used to quantify the concentrations of P in the soils of Parana State.
Resumo:
Aluminum (Al3+) toxicity is a major limiting factor to crop productivity in acid soils. The effects of aluminum on root and shoot growth of physic nut (Jatropha curcas L.) young plants and, the uptake and distribution of phosphorus, calcium, magnesium and aluminum in the roots and shoots were investigated in the present study. Plants were grown in 2.5L pots in a greenhouse. After fourteen days of adaptation to nutrient solution, plants were exposed to Al concentrations of 0, 370, 740, 1,100 and 1,480 mu mol L-1, corresponding to an active Al3+ solution of 13.3, 35.3, 90.0, 153.3 and 220.7 mu mol L-1, respectively. The dry matter partitioning between roots, stems and leaves, and the concentrations of P, Ca, Mg and Al in plant tissue, were measured after 75 days exposure to Al. The increasing level of Al3+ activity in solution progressively decreased the growth of the shoot and root of physic nut plants, and at the two highest active Al3+ levels, plants showed morphological abnormalities typical of the toxicity caused by this metal. Higher Al3+ activity reduced P concentrations in leaves and Ca and Mg in leaves and roots of physic nut, demonstrating the effect of Al on the uptake, transport and use of these nutrients by plants. The Al accumulated preferentially in the roots of physic nut, whereas only a small amount was transported to shoots.
Resumo:
The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Candido Rondon, Parana State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers - either in isolation or in combination - resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este estudo foi conduzido para avaliar os efeitos da substituição do fosfato bicálcico pelo fosfato de rocha na dieta de bovinos em crescimento. Foram determinados a digestibilidade aparente das dietas, a absorção aparente do fósforo, cálcio e flúor, o pH ruminal, a concentração de amônia ruminal, a eficiência microbiana e o fósforo no plasma utilizando-se cinco bovinos da raça Holandesa Preto-e-Branco, fistulados, pesando entre 275 e 283 kg. O delineamento estatístico foi um quadrado latino 5 × 5 e as dietas consistiram de 0, 25, 50, 75 e 100% de substituição do fosfato bicálcico pelo fosfato de rocha no suplemento mineral. A adição de fosfato de rocha nas dietas ocasionou aumento linear na ingestão, no fluxo omasal, no fluxo fecal e no desaparecimento total do flúor. As dietas não diferiram quanto à absorção aparente do cálcio, assim como em relação à ingestão, excreção, digestão e digestibilidades aparentes parcial e total da matéria seca, matéria orgânica, proteína bruta, fibra em detergente neutro e carboidratos não-fibrosos. O fósforo no plasma não foi influenciado pelos tratamentos e a média foi de 5,93 mg/dL. Não houve diferença para o pH ruminal e concentração de amônia ruminal. A substituição do fosfato bicálcico não afetou a síntese microbiana aparente e verdadeira de proteína. A total substituição do fosfato bicálcico pelo fosfato de rocha em suplementos minerais em bovinos em crescimento não afetou o ambiente ruminal e a síntese de proteína no rúmen. Assim, a substituição do fosfato bicálcico em dietas para bovinos em crescimento diminui a absorção de fósforo e deveria ser vista com cuidado dependendo dos requerimentos.
Resumo:
Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).
Resumo:
We examined the effects of simulated folivory by caterpillars on photosynthetic parameters and nitrogen (N) resorption efficiency in Quercus pyrenaica saplings. We analyzed the differences between intact leaves in control plants, punched leaves in damaged plants, and intact leaves in damaged plants. We then established two levels of simulated folivory: low (approximate to 13% of the leaf area of one main branch removed per plant) and high (approximate to 26% of the leaf area of one main branch removed per plant) treatments. No differences were found in net assimilation rate and conductance between either leaf type or treatment during the most favourable period for photosynthesis. However, the N content was lower in punched than in intact leaves, and as a result PNUE was higher in damaged leaves from treated trees. In leaf-litter samples, N mass was significantly higher in punched than in intact leaves in treated plants, and LMA was significantly higher in damaged than in intact leaves of both the treated and control plants. Consequently, N resorption efficiency was around 15% lower in damaged leaves as compared with intact leaves from treated and control plants. Mechanical injury to leaves not only triggered no compensatory photosynthetic response to compensate a lower carbon uptake due to leaf area loss, but also affected the resorption process that characterizes leaf senescence.