989 resultados para Phase-space Methods
Resumo:
The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality conservation) is verified for Hamiltonians of degrees N (N>2) is explicitly determined through a class of restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality conservation is discussed in detail. Also, the explicit derivation of the general unitary operator which linearly transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general geometrical interpretation in phase space, such as rotations (parity, Fourier).
Resumo:
Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain scarce. Thus, this review involved a survey of different synthetic approaches for preparing ion imprinted adsorbents and their application for the development of solid phase extraction methods, metal ion sensors (electrodes and optodes) and selective membranes.
Resumo:
Modifiering av metallytor med starkt adsorberade kirala organiska molekyler är eventuellt den mest relevanta teknik man vet i dag för att skapa kirala ytor. Den kan utnyttjas i katalytisk produktion av enantiomeriskt rena kirala föreningar som behövs t.ex. som läkemedel och aromkemikalier. Trots många fördelar av asymmetrisk heterogen katalys jämfört med andra sätt för att få kirala föreningar, har den ändå inte blivit ett allmänt verktyg för storskaliga tillämpningar. Detta beror t.ex. på brist på djupare kunskaper i katalytiska reaktionsmekanismer och ursprunget för asymmetrisk induktion. I denna studie användes molekylmodelleringstekniker för att studera asymmetriska, heterogena katalytiska system, speciellt hydrering av prokirala karbonylföreningar till motsvarande kirala alkoholer på cinchona-alkaloidmodifierade Pt-katalysatorer. 1-Fenyl-1,2-propandion (PPD) och några andra föreningar, som innehåller en prokiral C=O-grupp, användes som reaktanter. Konformationer av reaktanter och cinchona-alkaloider (som kallas modifierare) samt vätebundna 1:1-komplex mellan dem studerades i gas- och lösningsfas med metoder som baserar sig på vågfunktionsteori och täthetsfunktionalteori (DFT). För beräkningen av protonaffiniteter användes också högst noggranna kombinationsmetoder såsom G2(MP2). Den relativa populationen av modifierarnas konformationer varierade som funktion av modifieraren, dess protonering och lösningsmedlet. Flera reaktant–modifierareinteraktionsgeometrier beaktades. Slutsatserna på riktning av stereoselektivitet baserade sig på den relativa termodynamiska stabiliteten av de diastereomeriska reaktant–modifierare-komplexen samt energierna hos π- och π*-orbitalerna i den reaktiva karbonylgruppen. Adsorption och reaktioner på Pt(111)-ytan betraktades med DFT. Regioselektivitet i hydreringen av PPD och 2,3-hexandion kunde förklaras med molekyl–yta-interaktioner. Storleken och formen av klustret använt för att beskriva Pt-ytan inverkade inte bara på adsorptionsenergierna utan också på de relativa stabiliteterna av olika adsorptionsstrukturer av en molekyl. Populationerna av modifierarnas konformationer i gas- och lösningsfas korrelerade inte med populationerna på Pt-ytan eller med enantioselektiviteten i hydreringen av PPD på Pt–cinchona-katalysatorer. Vissa modifierares konformationer och reaktant–modifierare-interaktionsgeometrier var stabila bara på metallytan. Teoretiskt beräknade potentialenergiprofiler för hydrering av kirala α-hydroxiketoner på Pt implicerade preferens för parvis additionsmekanism för väte och selektiviteter i harmoni med experimenten. De uppnådda resultaten ökar uppfattningen om kirala heterogena katalytiska system och kunde därför utnyttjas i utvecklingen av nya, mera aktiva och selektiva kirala katalysatorer.
Resumo:
Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it is described by a noninteger dimension. This contribution presents an overview of the main definitions of dimension discussing their evaluation from time series employing the correlation and the generalized dimension. The investigation is applied to the nonlinear pendulum where signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the time series. State space reconstruction and the determination of attractor dimensions are carried out regarding periodic and chaotic signals. Results obtained from time series analyses are compared with a reference value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure allows one to identify the best techniques to be applied in the analysis of experimental data.
Resumo:
In this work we consider the transient stability of coupled motions of a 2 D.O.F. nonlinear oscillator that can represent, for example, the motions of a sea vessel under the action of trains of regular lateral waves. Instability is studied as the escape of the system from a safe potential well. The set of initial conditions in phase space that lead to acceptable motions constitutes its safe basin. We investigate the evolution of these safe basins under variation of parameters such as frequency and amplitude of waves, and an internal tuning parameter. Complex nonlinear phenomena are known to play an important role in determining the loss of safe basins as, say, wave amplitude is increased. We therefore investigate those processes, and attempt to classify them in terms of their speed relative to changes in parameter values. "Mechanism basins" are produced depicting regions of parameter space in which rapid or slow losses of safe basin are observed. We propose that a comprehensive understanding of mechanisms of loss of safe basins can be a valuable tool in assessing stability properties of these systems, and we give a conceptual view of how such information could be used.
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture.
Resumo:
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.
Resumo:
In this Letter we numerically investigate the dynamics of a system of two coupled chaotic multimode Nd:YAG lasers with two mode and three mode outputs. Unidirectional and bidirectional coupling schemes are adopted; intensity time series plots, phase space plots and synchronization plots are used for studying the dynamics. Quality of synchronization is measured using correlation index plots. It is found that for laser with two mode output bidirectional direct coupling scheme is found to be effective in achieving complete synchronization, control of chaos and amplification in output intensity. For laser with three mode output, bidirectional difference coupling scheme gives much better chaotic synchronization as compared to unidirectional difference coupling but at the cost of higher coupling strength. We also conclude that the coupling scheme and system properties play an important role in determining the type of synchronization exhibited by the system.
Resumo:
I present a novel design methodology for the synthesis of automatic controllers, together with a computational environment---the Control Engineer's Workbench---integrating a suite of programs that automatically analyze and design controllers for high-performance, global control of nonlinear systems. This work demonstrates that difficult control synthesis tasks can be automated, using programs that actively exploit and efficiently represent knowledge of nonlinear dynamics and phase space and effectively use the representation to guide and perform the control design. The Control Engineer's Workbench combines powerful numerical and symbolic computations with artificial intelligence reasoning techniques. As a demonstration, the Workbench automatically designed a high-quality maglev controller that outperforms a previous linear design by a factor of 20.
Resumo:
Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while eddy feedback on the zonal flow may be interpreted in terms of wave breaking associated with baroclinic life cycles in lateral shear.
Resumo:
Event-related brain potentials (ERP) are important neural correlates of cognitive processes. In the domain of language processing, the N400 and P600 reflect lexical-semantic integration and syntactic processing problems, respectively. We suggest an interpretation of these markers in terms of dynamical system theory and present two nonlinear dynamical models for syntactic computations where different processing strategies correspond to functionally different regions in the system's phase space.
Resumo:
The emergence of mental states from neural states by partitioning the neural phase space is analyzed in terms of symbolic dynamics. Well-defined mental states provide contexts inducing a criterion of structural stability for the neurodynamics that can be implemented by particular partitions. This leads to distinguished subshifts of finite type that are either cyclic or irreducible. Cyclic shifts correspond to asymptotically stable fixed points or limit tori whereas irreducible shifts are obtained from generating partitions of mixing hyperbolic systems. These stability criteria are applied to the discussion of neural correlates of consiousness, to the definition of macroscopic neural states, and to aspects of the symbol grounding problem. In particular, it is shown that compatible mental descriptions, topologically equivalent to the neurodynamical description, emerge if the partition of the neural phase space is generating. If this is not the case, mental descriptions are incompatible or complementary. Consequences of this result for an integration or unification of cognitive science or psychology, respectively, will be indicated.
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Resumo:
Many physical systems exhibit dynamics with vastly different time scales. Often the different motions interact only weakly and the slow dynamics is naturally constrained to a subspace of phase space, in the vicinity of a slow manifold. In geophysical fluid dynamics this reduction in phase space is called balance. Classically, balance is understood by way of the Rossby number R or the Froude number F; either R ≪ 1 or F ≪ 1. We examined the shallow-water equations and Boussinesq equations on an f -plane and determined a dimensionless parameter _, small values of which imply a time-scale separation. In terms of R and F, ∈= RF/√(R^2+R^2 ) We then developed a unified theory of (extratropical) balance based on _ that includes all cases of small R and/or small F. The leading-order systems are ensured to be Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity equation. However, the height field is not necessarily in geostrophic balance, so the leading-order dynamics are more general than in quasi-geostrophy. Thus the quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic dynamics) is valid more generally than its traditional derivation would suggest. In the case of the Boussinesq equations, we have found that balanced dynamics generally implies hydrostatic balance without any assumption on the aspect ratio; only when the Froude number is not small and it is the Rossby number that guarantees a timescale separation must we impose the requirement of a small aspect ratio to ensure hydrostatic balance.