945 resultados para Pests of plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of recent articles emphasize the fundamental importance of taphonomy and formation processes to interpretation of plant remains assemblages, as well as the value of interdisciplinary approaches to studies of environmental change and ecological and social practices. This paper examines ways in which micromorphology can contribute to integrating geoarchaeology and archaeobotany in analysis of the taphonomy and context of plant remains and ecological and social practices. Micromorphology enables simultaneous in situ study of diverse plant materials and thereby traces of a range of depositional pathways and histories. In addition to charred plant remains, also often preserved in semi-arid environments are plant impressions, phytoliths and calcitic ashes. These diverse plant remains are often routinely separated and extracted from their depositional context or lost using other analytical techniques, thereby losing crucial evidence on taphonomy, formation processes and contextual associations, which are fundamental to all subsequent interpretations. Although micromorphological samples are small in comparison to bulk flotation samples of charred plant remains, their size is similar to phytolith and pollen samples. In this paper, key taphonomic issues are examined in the study of: fuel; animal dung, animal management and penning; building materials; and specific activities, including food storage and preparation and ritual, using selected case-studies from early urban settlements in the Ancient Near East. Microarchaeological residues and experimental archaeology are also briefly examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Plant Proteomics Organization (INPPO) is a non-profit-organization consisting of people who are involved or interested in plant proteomics. INPPO is constantly growing in volume and activity, which is mostly due to the realization among plant proteomics researchers worldwide for the need of such a global platform. Their active participation resulted in the rapid growth within the first year of INPPO’s official launch in 2011 via its website (www.inppo.com) and publication of the ‘viewpoint paper’ in a special issue of PROTEOMICS (May 2011). Here, we will be highlighting the progress achieved in the year 2011 and the future targets for the year 2012 and onwards. INPPO has achieved a successful administrative structure, the Core Committee (CC; composed of President, Vice-President, and General Secretaries), Executive Council (EC), and General Body (GB) toward achieving the INPPO objectives by its proposed initiatives. Various committees and subcommittees are in the process of being functionalized via discussion amongst scientists around the globe. INPPO’s primary aim to popularize the plant proteomics research in biological sciences has also been recognized by PROTEOMICS where a new section has been introduced to plant proteomics starting January 2012, following the very first issue of this journal devoted to plant proteomics in May 2011. To disseminate organizational activities to the scientific community, INPPO has launched a biannual (in January & July) newsletter entitled “INPPO Express: News & Views” with the first issue published in January 2012. INPPO is also planning to have several activities in 2012, including programs within the Education Outreach committee in different countries, and the development of research ideas and proposals with priority on crop and horticultural plants, while keeping tight interactions with proteomics programs on model plants such as Arabidopsis thaliana, rice, or Medicago truncatula. Altogether, the INPPO progress and upcoming activities are because of immense support, dedication, and hard work of all members of the INPPO family, and also due to the wide encouragement and support from the communities (scientific and non-scientific).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grassland ecosystems comprise a major portion of the earth’s terrestrial surface, ranging from high-input cultivated monocultures or simple species mixtures to relatively unmanaged but dynamic systems. Plant pathogens are a component of these systems with their impact dependent on many interacting factors, including grassland species population dynamics and community composition, the topics covered in this paper. Plant pathogens are affected by these interactions and also act reciprocally by modifying their nature. We review these features of disease in grasslands and then introduce the 150-year long-term Park Grass Experiment (PGE) at Rothamsted Research in the UK. We then consider in detail two plant-pathogen systems present in the PGE, Tragopogon pratensis-Puccinia hysterium and Holcus lanata-Puccinia coronata. These two systems have very different life history characteristics: the first, a biennial member of the Asteraceae infected by its host-specific, systemic rust; the second, a perennial grass infected by a host-non-specific rust. We illustrate how observational, experimental and modelling studies can contribute to a better understanding of population dynamics, competitive interactions and evolutionary outcomes. With Tragopogon pratensis-Puccinia hysterium, characterised as an “outbreak” species in the PGE, we show that pathogen-induced mortality is unlikely to be involved in host population regulation; and that the presence of even a short-lived seed-bank can affect the qualitative outcomes of the host-pathogen dynamics. With Holcus lanata-Puccinia coronata, we show how nutrient conditions can affect adaptation in terms of host defence mechanisms, and that co-existence of competing species affected by a common generalist pathogen is unlikely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world’s population will reach 9–12 billion people demanding a food production increase of 34–70% (FAO, 2009) from today’s food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two previous reconstructions of palaeovegetation across the whole of China were performed using a simple classification of plant functional types (PFTs). Now a more explicit, global PFT classification scheme has been developed, and a substantial number of additional pollen records have become available. Here we apply the global scheme of PFTs to a comprehensive set of pollen records available from China to test the applicability of the global scheme of PFTs in China, and to obtain a well-founded reconstruction of changing palaeovegetation patterns. A total of 806 pollen surface samples, 188 mid-Holocene (MH, 6000 14C yr BP) and 50 last glacial maximum (LGM, 18,000 14C yr BP) pollen records were used to reconstruct vegetation patterns in China, based on a new global classification system of PFTs and a standard numerical technique for biome assignment (biomization). The biome reconstruction based on pollen surface samples showed convincing agreement with present potential natural vegetation. Coherent patterns of change in biome distribution between MH, LGM and present are observed. In the MH, cold and cool-temperate evergreen needleleaf forests and mixed forests, temperate deciduous broadleaf forest, and warm-temperate evergreen broadleaf and mixed forest in eastern China were shifted northward by 200–500 km. Cold-deciduous forest in northeastern China was replaced by cold evergreen needleleaf forest while in central northern China, cold-deciduous forest was present at some sites now occupied by temperate grassland and desert. The forest–grassland boundary was 200–300 km west of its present position. Temperate xerophytic shrubland, temperate grassland and desert covered a large area on the Tibetan Plateau, but the area of tundra was reduced. Treeline was 300–500 m higher than present in Tibet. These changes imply generally warmer winters, longer growing seasons and more precipitation during the MH. Westward shifts of the forest–shrubland–grassland and grassland–desert boundaries imply greater moisture availability in the MH, consistent with a stronger summer monsoon. During the LGM, in contrast, cold-deciduous forest, cool-temperate evergreen needleleaf forest, cool mixed forests, warm-temperate evergreen broadleaf and mixed forest in eastern China were displaced to the south by 300–1000 km, while temperate deciduous broadleaf forest, pure warm-temperate evergreen forest, tropical semi-evergreen and evergreen broadleaf forests were restricted or absent from the mainland of southern China, implying colder winters than present. Strong shifts of temperate xerophytic shrubland, temperate grassland and desert to the south and east in northern and western China and on the Tibetan Plateau imply drier conditions than present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grass-free lawn is a novel development in modern ornamental horticulture where the traditional monoculture of grass is replaced by a variety of mowing-tolerant clonal forbs. It brings floral aesthetics and a diverse species approach to the use of lawn space. How the number of constituent forb species affects the aesthetic and structural performance of grass-free lawns was investigated using grass-free lawns composed of four, six and twelve British native clonal perennial forb species. Lawn productivity was seen to increase with increasing species number but the relationship was not linear. Plant cover was dynamic in all lawn types, varied between years and was not representative of individual species' floral performance. The behaviour of component species common to all lawns suggested that lawns with 12 species show greater structural stability than the lawns with a lower species number. Visual performance in lawns with the greatest species number was lower than in lawns with fewer species, with increasing variety in floral size and individual species floral productivity leading to a trade-off between diversity and floral performance. Individual species were seen to have different aesthetic functions in grass-free lawns either by providing flowers, ground coverage or both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ancestral human populations had diets containing more indigestible plant material than present-day diets in industrialized countries. One hypothesis for the rise in prevalence of obesity is that physiological mechanisms for controlling appetite evolved to match a diet with plant fiber content higher than that of present-day diets. We investigated how diet affects gut microbiota and colon cells by comparing human microbial communities with those from a primate that has an extreme plant-based diet, namely, the gelada baboon, which is a grazer. The effects of potato (high starch) versus grass (high lignin and cellulose) diets on human-derived versus gelada-derived fecal communities were compared in vitro. We especially focused on the production of short-chain fatty acids, which are hypothesized to be key metabolites influencing appetite regulation pathways. The results confirmed that diet has a major effect on bacterial numbers, short-chain fatty acid production, and the release of hormones involved in appetite suppression. The potato diet yielded greater production of short-chain fatty acids and hormone release than the grass diet, even in the gelada cultures, which we had expected should be better adapted to the grass diet. The strong effects of diet on hormone release could not be explained, however, solely by short-chain fatty acid concentrations. Nuclear magnetic resonance spectroscopy found changes in additional metabolites, including betaine and isoleucine, that might play key roles in inhibiting and stimulating appetite suppression pathways. Our study results indicate that a broader array of metabolites might be involved in triggering gut hormone release in humans than previously thought. IMPORTANCE: One theory for rising levels of obesity in western populations is that the body's mechanisms for controlling appetite evolved to match ancestral diets with more low-energy plant foods. We investigated this idea by comparing the effects of diet on appetite suppression pathways via the use of gut bacterial communities from humans and gelada baboons, which are modern-day primates with an extreme diet of low-energy plant food, namely, grass. We found that diet does play a major role in affecting gut bacteria and the production of a hormone that suppresses appetite but not in the direction predicted by the ancestral diet hypothesis. Also, bacterial products were correlated with hormone release that were different from those normally thought to play this role. By comparing microbiota and diets outside the natural range for modern humans, we found a relationship between diet and appetite pathways that was more complex than previously hypothesized on the basis of more-controlled studies of the effects of single compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate and improve the accuracy of plant uptake models for neutral hydrophobic organic pollutants (1 < logKOW < 9, −8 < logKAW < 0) used in regulatory exposure assessment tools, using uncertainty and sensitivity analyses. The models considered were RAIDAR, EUSES, CSOIL, CLEA, and CalTOX. In this research, CSOIL demonstrated the best performance of all five exposure assessment tools for root uptake from polluted soil in comparison with observed data, but no model predicted shoot uptake well. Recalibration of the transpiration and volatilisation parameters improved the performance of CSOIL and CLEA. The dominant pathway for shoot uptake simulated differed according to the properties of the chemical under consideration; those with a higher air–water partition coefficient were transported into shoots via the soil-air-plant pathway, while chemicals with a lower octanol–water partition coefficient and air–water partition coefficient were transported via the root. The soil organic carbon content was a particularly sensitive parameter in each model and using a site specific value improved model performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment