908 resultados para Perry.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The causes of schizophrenia are unknown, but there is evidence linking subtle deviations in neural development with schizophrenia. Embryonic brain development cannot be studied in an adult with schizophrenia, but neurogenesis and early events in neuronal differentiation can be investigated throughout adult life in the human olfactory epithelium. Our past research has demonstrated that neuronal cultures can be derived from biopsy of the human adult olfactory epithelium. In the present study, we examined mechanisms related to neurogenesis and neuronal differentiation in adults with schizophrenia versus well controls. Forty biopsies were collected under local anaesthesia from ten individuals with DSM III-R schizophrenia and ten age- and sex-matched well controls. All patients, except one, were receiving antipsychotic medication at the time of the biopsy, Immunostaining for neuronal markers indicated that neurogenesis occurred in the biopsies from both patients and controls since all contained cells expressing tubulin and/or olfactory marker protein. The major findings of this study are: 1. biopsies from patients with schizophrenia showed a significantly reduced ability to attach to the culture slide: 29.9% of patient biopsies attached compared to 73.5% of control biopsies; 2. biopsies from patients with schizophrenia had a significantly greater proportion of cells undergoing mitosis: 0.69% in the patients compared to 0.29% in the controls; and 3. dopamine (10 mu M) significantly increased the proportion of apoptotic cells in the control cultures but significantly decreased the proportion in patients' cultures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory of Mind (ToM) is the cognitive achievement that enables us to report our propositional attitudes, to attribute such attitudes to others, and to use such postulated or observed mental states in the prediction and explanation of behavior. Most normally developing children acquire ToM between the ages of 3 and 5 years, but serious delays beyond this chronological and mental age have been observed in children with autism, as well is in those with severe sensory impairments. We examine data from Studies of ToM in normally developing children and those with deafness, blindness, autism and Williams syndrome, as well as data from lower primates, in a search for answers to key theoretical questions concerning the origins, nature and representation of knowledge about the mind. In answer to these, we offer a framework according to which ToM is jointly dependent upon language and social experience, and is produced by a conjunction of language acquisition with children's growing social understanding, acquired through conversation and interaction with others. We argue that adequate language and adequate social skills are jointly causally sufficient, and individually causally necessary, for producing ToM. Thus our account supports a social developmental theory of the genesis of human cognition, inspired by the work of Sellars and Vygotsky.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the effect of the N-terminal Slit2 protein on neuronal survival and development, recombinant human N-terminal Slit2 (N-Slit2) was assayed against isolated embryonic chick dorsal root ganglion sensory, ciliary ganglion and paravertebral sympathetic neurons. N-Slit2 promoted significant levels of neuronal survival and neurite extension in all of these populations. The protein was also assayed against postnatal mouse dorsal root ganglion neurons and found to promote neuronal survival in a similar manner. These findings suggest the Slit proteins may play an important role during development of the nervous system, mediating cellular survival in addition to the well documented role these proteins play in axonal and neuronal chemorepulsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. This is an over-view of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. Study Design: After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheating glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. Methods: The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Results: Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic lesion of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of dopamine altered these indices enough to allow accurate differentiation of schizophrenics from control patients, leading to, possibly for the first time, an early objective diagnosis of schizophrenia and possible assessment of preventive strategies. OEGs from the nose were shown to be as effective as those from the olfactory bulb in promoting axonal growth across transected spinal cords even when added I month after injury in the rat. These otherwise paraplegic rats grew motor and proprioceptive and fine touch fibers with corresponding behavioral improvement. Conclusions. The tissues of the olfactory mucosa are readily available to the otolaryngologist. Being surface cells, they must regenerate (called neurogenesis). Biopsy of this area and amplification of cells in culture gives the scientist a window to the developing brain, including early diagnosis of schizophrenia. The Holy Grail of neurological disease is the cure of traumatic paraplegia and OEGs from the nose promote that repair. The otolaryngologist may become the necessary partner of the neurophysiologist and spinal surgeon to take the laboratory potential of paraplegic cure into the day-to-day realm of clinical reality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muitos têm argumentado que as sociedades industriais estão se tornando cada vez mais dependentes da tecnologia e, conseqüentemente, mais vulneráveis às falhas tecnológicas. Não obstante a difusão da tecnologia computacional, pouco é conhecido a respeito das falhas do computador, exceto, talvez, as que são muito comuns. Este artigo analisa as fontes de insegurança do computador e revê a extensão e o custo dos computadores inconfiáveis. Ao contrário dos articulistas anteriores, os autores argumentam que os computadores digitais são inerentemente não confiáveis por duas razões: primeira, são mais propensos a falhas totais, ao invés de parciais; e segunda, sua enorme complexidade significa que jamais poderão ser completamente testados antes de serem colocados em uso. Os autores descrevem em seguida várias tentativas institucionais para melhorar a confiabilidade, bem como possíveis soluções propostas pelos cientistas da computação, mas concluem que até agora nenhuma foi adequada. Em conseqüência, recomendam que os computadores não devam ser utilizados em aplicações onde haja risco de vida.