997 resultados para Peripheral Regions
Resumo:
Strategies to minimize the immunogenicity and toxicity of murine anti-CD3 antibodies (e.g. OKT3) are of special interest for organ transplantation and for the treatment of autoimmune diseases. In the present work, we have developed two humanized anti-CD3 antibodies. These molecules were shown to bind to human CD3, though less efficiently, and display less mitogenic activity than CKT3. These results prompted us to investigate whether this reduced mitogenic potential was associated with the development of anti-inflammatory properties. Indeed, in peripheral blood mononuclear cells (PBMCs), the humanized antibody versions induced a predominantly anti-inflammatory cytokine profile, in contrast with the pro-inflammatory profile induced by OKT3. Neither OKT3 nor the humanized versions induced the expression of IL-4, IL-2 or TGF-beta. Both humanized antibodies induced significantly lower production of IFN-gamma and IL-5 and slightly higher production of IL-10 than OKT3. This immunomodulatory profile was most evident by the 80-fold higher ratio of IL-10/IFN-gamma production in PBMCs cultured in the presence of the humanized antibodies, compared to those stimulated with CKT3. Furthermore, these humanized anti-CD3 antibodies induced a late FOXP3 gene expression while OKT3 led to a more transient expression of FOXP3. Taken our results, we suggest that these humanized anti-CD3 antibodies may promote the development of T cells with immunoregulatory activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background Chronic aortic valve disease (AVD) is characterized by progressive accumulation of interstitial myocardial fibrosis (MF). However, assessment of MF accumulation has only been possible through histologic analyses of endomyocardial biopsies. We sought to evaluate contrast-enhanced magnetic resonance imaging (ce-MRI) as a noninvasive method to identify the presence of increased MF in patients with severe AVD. Methods Seventy patients scheduled to undergo aortic valve replacement surgery were examined by cine and ce-MRI in a 1.5-T scanner. Cine images were used for the assessment of left ventricular (LV) volumes, mass, and function. Delayed-enhancement images were used to characterize the regions of MF. In addition, histologic analyses of myocardial samples obtained during aortic valve replacement surgery were used for direct quantification of interstitial MF. Ten additional subjects who died of noncardiac causes served as controls for the quantitative histologic analyses. Results Interstitial MF determined by histopathologic analysis was higher in patients with AVID than in controls (2.7% +/- 2.0% vs 0.6% +/- 0.2%, P =.001). When compared with histopathologic results, ce-MRI demonstrated a sensitivity of 74%, a specificity of 81%, and an accuracy of 76% to identify AVD patients with increased interstitial MF There was a significant inverse correlation between interstitial MF and LV ejection fraction (r = -0.67, P <.0001). Accordingly, patients with identifiable focal regions of MF by ce-MRI exhibited worse LV systolic function than those without MF (45% +/- 14% vs 65% +/- 14%, P <.0001). Conclusions Contrast-enhanced MRI allows for the noninvasive detection of focal regions of MF in patients with severe AVD. Moreover, patients with identifiable MF by ce-MRI exhibited worse LV functional parameters. (Am Heart J 2009; 157:361-8.)
Resumo:
Background: Although obesity is usually observed in peripheral arterial disease (PAD) patients, the effects of the association between these diseases on walking capacity are not well documented. Objective: The main objectives of this study were to determine the effects of obesity on exercise tolerance and post-exercise hemodynamic recovery in elderly PAD patients. Methods: 46 patients with stable symptoms of intermittent claudication were classified according to their body mass index (BMI) into normal group (NOR) = BMI < 28.0 and obese or in risk of obesity group (OBE) = BMI >= 28.0. All patients performed a progressive graded treadmill test. During exercise, ventilatory responses were evaluated and pre- and post-exercise ankle and arm blood pressures were measured. Results: Exercise tolerance and oxygen consumption at total walking time were similar between OBE and NOR. However, OBE showed a lower claudication time (309 +/- 151 vs. 459 +/- 272 s, p = 0.02) with a similar oxygen consumption at this time. In addition, OBE presented a longer time for ankle brachial index recovery after exercise (7.8 +/- 2.8 vs. 6.3 +/- 2.6 min, p = 0.02). Conclusion: Obesity in elderly PAD patients decreased time to claudication, and delayed post-exercise hemodynamic recovery. These results suggest that muscle metabolic demand, and not total workload, is responsible for the start of the claudication and maximal exercise tolerance in PAD patients. Moreover, claudication duration might be responsible for the time needed to a complete hemodynamic recovery after exercise. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
Objective: Patients undergoing amputation of the lower limb due to peripheral arterial disease (PAD) are at risk of developing deep venous thrombosis (DVT). Few studies in the research literature report the incidence of DVT during the early postoperative period or the risk factors for the development of DVT in the amputation stump. This prospective study evaluated the incidence of DVT during the first 35 postoperative days in patients who had undergone amputation of the lower extremity due to PAD and its relation to comorbidities and death. Methods: Between September 2004 and March 2006, 56 patients (29 men), with a mean age of 67.25 years, underwent 62 amputations, comprising 36 below knee amputations (BKA) and 26 above knee amputations (AKA). Echo-Doppler scanning was performed preoperatively and on postoperative days 7 and 31 (approximately). All patients received acetylsalicylic acid (100 mg daily) preoperatively and postoperatively, but none received prophylactic anticoagulation. Results: DVT occurred in 25.8% of extremities with amputations (10 ARA and 6 BKA). The cumulative incidence in the 35-day postoperative period was 28% (Kaplan-Meier). There was a significant difference (P = .04) in the incidence of DVT between AKA (37.5%) and BKA (21.2%). Age >= 70 years (48.9% vs 16.8%, P = .021) was also a risk factor for DVT in the univariate analysis. Of the 16 cases, 14 (87.5%) were diagnosed during outpatient care. The time to discharge after amputation was averaged 6.11 days in-hospital stay (range, 1-56 days). One symptomatic nonfatal pulmonary embolism occurred in a patient already diagnosed with DVT. There was no relation between other comorbidities and DVT. The multivariate analysis showed no association between risk factors and the occurrence of DVT in the amputated extremity. DVT ipsilateral to the amputation did not influence the mortality rate (9.7%). Conclusion: The incidence of DVT in the early postoperative period (<= 35 days) was elevated principally in patients aged >= 70 years and for AKA. Patients with PAD who have recently undergone major amputations should be considered at high risk for DVT, even after hospital discharge. Given the high rate of postoperative DVT observed in this study, we now recommend prophylactic anticoagulation for these patients, but further study is needed to determine the optimal duration and efficacy of this treatment. (J Vasc Surg 2008;48:1514-9.)
Resumo:
Severe sepsis and septic shock have long been a challenge in intensive care because of their common occurrence, high associated costs of care, and significant mortality. The Surviving Sepsis Campaign (SSC) was developed in an attempt to address clinical inertia in the adoption of evidence-based strategies. The campaign relies on worldwide support from professional societies and has gained consensus on the management of patients with severe sepsis. The guidelines have subsequently been deployed into two bundles, with each bundle component sharing a common relationship in time. The widespread adoption of such evidence-based practice in clinical care has been disappointingly slow despite the quantifiable benefits regarding mortality. In Brazil, a country of continental dimensions with a heterogeneous population and unequal access to health services, this reality is no different. From 2004 to 2007, four prospective studies were published describing the country`s reality. In the multicenter Promoting Global Research Excellence in Severe Sepsis (PROGRESS) Study, the in-hospital mortality rate was higher in Brazil when compared with other countries: 56% against 30% in developed countries and 45% in other developing countries. During these 2.5 years of the campaign in Brazil, 43 hospitals have been receiving the necessary training to put in practice the recommended measures in all Brazilian regions, except for the North. The idea of the campaign is based on a 25% reduction in the relative risk of death from severe sepsis and septic shock within 5 years in the SSC-participating Brazilian hospitals. Ideally, the mortality rate should come to a 41.2% level subject to the 2009 deadline. This article aims to describe the actual scenario of the SSC implementation in Brazilian institutions and to report on some initiatives that have been used to overcome barriers.
Resumo:
The role of chemokines has been extensively analyzed both in cancer risk and tumor progression. Among different cytokines, CXCR4 and its ligand CXCL12 have been recently subjected to a closer examination. The single-nucleotide polymorphism (SNP) rs1801157 (previously known as CXCL12-A/SDF1-3`A) in the CXCL12 gene and the relative expression of mRNA CXCL12 in peripheral blood were assessed in breast cancer patients, since the chemokine CXCL12 and its receptor CXCR4 regulate leukocyte trafficking and many essential biological processes, including tumor growth, angiogenesis and metastasis of different types of tumors. Genotyping was performed by PCR-RFLP (polymerase chain reaction followed by restriction fragment length polymorphism) using MspI restriction enzyme and the expression analyses by quantitative RT-PCR. No difference in GG genotype and allele A carrier frequencies were observed between breast cancer patients and healthy blood donors and nor when CXCL12 mRNA expression was assessed among patients with different tumor stages. However a significant difference was observed when CXCL12 mRNA relative expression was analyzed in breast cancer patients in accordance to the presence or absence of the CXCL12 rs1801157 allele A. Allele A breast cancer patients presented a mRNA CXCL12 expression about 2.1-fold smaller than GG breast cancer patients. Estrogen positive patients presenting CXCL12 allele A presented a significantly lower expression of CXCL12 in peripheral blood (p = 0.039) than GG hormone positive patients. Our findings demonstrated that allele A is associated with low expression of CXCL12 in the peripheral blood from ER-positive breast cancer patients, which suggests implications on breast cancer clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective. The purpose of this study was to evaluate the diagnostic usefulness of ulnar nerve sonography in leprosy neuropathy with electrophysiologic correlation. Methods. Twenty-one consecutive patients with leprosy (12 men and 9 women; mean age +/- SD, 47.7 +/- 17.2 years) and 20 control participants (14 men and 6 women; mean age, 46.5 +/- 16.2 years) were evaluated with sonography. Leprosy diagnosis was established on the basis of clinical, bacteriologic, and histopathologic criteria. The reference standard for ulnar neuropathy in this study was clinical symptoms in patients with proven leprosy The sonographic cross-sectional areas (CSAs) of the ulnar nerve in 3 different regions were obtained. Statistical analyses included Student t tests and receiver operating characteristic curve analysis. Results. The CSAs of the ulnar nerve were significantly larger in the leprosy group than the control group for all regions (P < .01). Sonographic abnormalities in leprosy nerves included focal thickening (90.5%), hypoechoic areas (81%), loss of the fascicular pattern (33.3%), and focal hyperechoic areas (4.7%). Receiver operating characteristic curve analysis showed that a maximum CSA cutoff value of 9.8 mm(2) was the best discriminator (sensitivity, 0.91; specificity, 0.90). Three patients with normal electrophysiologic findings had abnormal sonographic findings. Two patients had normal sonographic findings, of which 1 had abnormal electrophysiologic findings, and the other refused electrophysiologic testing. Conclusions. Sonography and electrophysiology were complementary for identifying ulnar nerve neuropathy in patients with leprosy, with clinical symptoms as the reference standard. This reinforces the role of sonography in the investigation of leprosy ulnar neuropathy.
Resumo:
Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer. Exp Biol Med 234:802-812, 2009
Resumo:
This study aimed to evaluate the association between the differential gene expression profiling of peripheral blood mononuclear cells of rheumatoid arthritis patients with their immunogenetic (human leucocyte antigen shared-epitope, HLA-SE), autoimmune response [anti-cyclic citrullinated peptide (CCP) antibodies], disease activity score (DAS-28) and treatment (disease-modifying antirheumatic drugs and tumour necrosis factor blocker) features. Total RNA samples were copied into Cy3-labelled complementary DNA probes, hybridized onto a glass slide microarray containing 4500 human IMAGE complementary DNA target sequences. The Cy3-monocolour microarray images from patients were quantified and normalized. Analysis of the data using the significance analysis of microarrays algorithm together with a Venn diagram allowed the identification of shared and of exclusively modulated genes, according to patient features. Thirteen genes were exclusively associated with the presence of HLA-SE alleles, whose major biological function was related to signal transduction, phosphorylation and apoptosis. Ninety-one genes were associated with disease activity, being involved in signal transduction, apoptosis, response to stress and DNA damage. One hundred and one genes were associated with the presence of anti-CCP antibodies, being involved in signal transduction, cell proliferation and apoptosis. Twenty-eight genes were associated with tumour necrosis factor blocker treatment, being involved in intracellular signalling cascade, phosphorylation and protein transport. Some of these genes had been previously associated with rheumatoid arthritis pathogenesis, whereas others were unveiled for future research.
Resumo:
Aims: To evaluate the intracellular production of tumor necrosis factor (TNF-alpha), interleukine-6 (IL-6), INF-gamma, IL-8 and IL-10 in peripheral blood lympbomononuclear cells from type 1 and type 2 diabetic patients, stratified according to the glycemic control. Methods: Thirty-five diabetic patients (17 type 1 and 18 type 2) and nine healthy individuals paired to patients in terms of sex and age were studied. Nine patients of each group were on inadequate glycemic controls. Intracellular cytokines were evaluated using flow cytometry. Cell cultures were stimulated with LPS to evaluate TNF-alpha and IL-6 or with PMA and lonomycin to evaluate IFN-gamma, IL-8 and IL-10 intracellular staining. Results: The percentages of CD33(+) cells bearing TNF-alpha and CD3(+) cells bearing IL-10 were increased in type 1 diabetic patients with inadequate glycemic control in relation to those with adequate control. In contrast, the percentage of CD3(+) cells bearing IL-8 was decreased in type 2 patients under inadequate glycemic control. Conclusions: The glycemic control is important for the detection of intracellular cytokines, and may contribute towards the susceptibility to infections in diabetic patients. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The MHC region (6p21) aggregates the major genes that contribute to susceptibility to type 1 diabetes (T1D). Three additional relevant susceptibility regions mapped on chromosomes 1p13 (PTPN22), 2q33 (CTLA-4), and 11p15 (insulin) have also been described by linkage studies. To evaluate the contribution of these susceptibility regions and the chromosomes that house these regions, we performed a large-scale differential gene expression on lymphomononuclear cells of recently diagnosed T1D patients, pinpointing relevant modulated genes clustered in these regions and their respective chromosomes. A total of 4608 cDNAs from the IMAGE library were spotted onto glass slides using robotic technology. Statistical analysis was carried out using the SAM program, and data regarding gene location and biological function were obtained at the SOURCE, NCBI, and FATIGO programs. Three induced genes were observed spanning around the MHC region (6p21-6p23), and seven modulated genes (5 repressed and 2 repressed) were seen spanning around the 6q21-24 region. Additional modulated genes were observed in and around the 1p13, 2q33, and 11p15 regions. Overall, modulated genes in these regions were primarily associated with cellular metabolism, transcription factors and signaling transduction. The differential gene expression characterization may identify new genes potentially involved with diabetes pathogenesis.
Resumo:
This study aims to evaluate the production of cytokines, tumor necrosis factor (TNF), and interleukin 10 (IL-10) in peripheral blood mononuclear cells (PBMCs) from type 1 diabetic (T1D) patients by means of intracellular staining, flow cytometry, and ELISA and to correlate it with inadequate (IN) and adequate (A) metabolic controls. We studied 28 patients with T1D and 20 healthy individuals (C) paired by sex and age. T1D patients were divided in patients with IN and A metabolic control. PBMC cultures were stimulated with LPS to evaluate TNF or were stimulated with PMA/ionomycin or concanavalin A to evaluate IL-10. The TNF levels in supernatant of stimulated cultures, evaluated by ELISA, of diabetic patients were similar to those of healthy individuals, although the percentage of CD 33(+) cells that were positive for TNF was higher in the T1D IN group compared to the T1D A group (P = 0.01). Similarly, the IL-10 levels evaluated by ELISA in stimulated cultures of T1D patients were not different from those in the control group; moreover, the percentage of CD3(+) cells positive for intracellular IL-10 were higher in the T1D IN group compared to C groups (P = 0.007). The increased levels of cytokines in T1D IN diabetic patients, with reduction in the A group, suggests that hyperglycemia stimulates an inflammatory state that can result in a deficient immune cellular response. The data suggest that assessment by intracellular staining seems to be more accurate than the ELISA technique in evaluating diabetic patients.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand of peroxisome proliferator-activated receptors gamma (PPAR-gamma) and is now recognized as a potent anti-inflammatory mediator. However, information regarding the influence of 15d-PGJ(2) on inflammatory pain is still unknown. In this study, we evaluated the effect of 15d-PGJ(2) upon inflammatory hypernociception and the mechanisms involved in this effect. We observed that intraplantar administration of 15d-PGJ(2) (30-300 ng/paw) inhibits the mechanical hypernociception induced by both carrageenan (100 mu g/paw) and the directly acting hypernociceptive mediator, prostaglandin E-2 (PGE(2)). Moreover, 15d-PGJ(2) [100 ng/temporomandibular joint (TMJ)] inhibits formalininduced TMJ hypernociception. On the other hand, the direct administration of 15d-PGJ(2) into the dorsal root ganglion was ineffective in blocking PGE(2)- induced hypernociception. In addition, the 15d-PGJ(2) antinociceptive effect was enhanced by the increase of macrophage population in paw tissue due to local injection of thioglycollate, suggesting the involvement of these cells on the 15d-PGJ(2)-antinociceptive effect. Moreover, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone and by the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662), suggesting the involvement of peripheral opioids and PPAR-gamma receptor in the process. Similar to opioids, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide/cGMP/protein kinase G (PKG)/K-ATP(+) channel pathway because it was prevented by the pretreatment with the inhibitors of nitric-oxide synthase (N-G-monomethyl-L-arginine acetate), guanylate cyclase] 1H-(1,2,4)-oxadiazolo(4,2-alpha) quinoxalin-1- one[, PKG [indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycone (KT5823)], or with the ATP-sensitive potassium channel blocker glibenclamide. Taken together, these results demonstrate for the first time that 15d-PGJ(2) inhibits inflammatory hypernociception via PPAR-gamma activation. This effect seems to be dependent on endogenous opioids and local macrophages.
Resumo:
This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.