948 resultados para Performance of High Energy Physics detectors
Resumo:
A measurement of the single-top-quark t-channel production cross section in pp collisions at √s=7 TeV with the CMS detector at the LHC is presented. Two different and complementary approaches have been followed. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. Data have been collected for the muon and electron final states, corresponding to integrated luminosities of 1.17 and 1.56 fb-1, respectively. The single-top-quark production cross section in the t-channel is measured to be 67.2±6.1 pb, in agreement with the approximate next-to-next-to-leading- order standard model prediction. Using the standard model electroweak couplings, the CKM matrix element |V tb| is measured to be 1.020 ± 0.046 (meas.) ± 0.017 (theor.). © 2012 CERN for the benefit of the CMS collaboration.
Resumo:
The mass of the top quark is measured using a sample of t̄t candidate events with one electron or muon and at least four jets in the final state, collected by CMS in pp collisions at √s =7 TeV at the LHC. A total of 5174 candidate events is selected from data corresponding to an integrated luminosity of 5.0 fb-1. For each event the mass is reconstructed from a kinematic fit of the decay products to a t̄t hypothesis. The top-quark mass is determined simultaneously with the jet energy scale (JES), constrained by the known mass of the W boson in q̄q decays, to be 173.49 ± 0.43 (stat. + JES) ±0.98 (syst.) GeV. © 2012 CERN for the benefit of the CMS collaboration.
Resumo:
Includes bibliography
Resumo:
A search for supersymmetry in final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of s=7 TeV. The data sample corresponds to an integrated luminosity of 4.98 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, α T, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. The search is performed in a signal region that is binned in the scalar sum of the transverse energy of jets and the number of jets identified as originating from a bottom quark. No excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of the constrained minimal supersymmetric extension of the standard model, and also in simplified models, with a special emphasis on compressed spectra and third-generation scenarios.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS Collaboration.
Resumo:
A search for new physics is performed using events with isolated same-sign leptons and at least two bottom-quark jets in the final state. Results are based on a sample of proton-proton collisions collected at a center-of-mass energy of 8 TeV with the CMS detector and corresponding to an integrated luminosity of 10.5 fb-1. No excess above the standard model background is observed. Upper limits are set on the number of events from non-standard-model sources and are used to constrain a number of new physics models. Information on acceptance and efficiencies is also provided so that the results can be used to confront an even broader class of new physics models. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
The b ghost in the non-minimal pure spinor formalism is not a fundamental field. It is based on a complicated chain of operators and proving its nilpotency is nontrivial. Chandia proved this property in arXiv:1008.1778, but with an assumption on the nonminimal variables that is not valid in general. In this work, the b ghost is demonstrated to be nilpotent without this assumption. © 2013 SISSA, Trieste, Italy.
Resumo:
A measurement is presented of the t̄t production cross section σt̄t in proton-proton collisions at a centre-of-mass energy of 7 TeV, in the all-jet final state that contains at least six jets, two of which are tagged as originating from b quarks. The data correspond to an integrated luminosity of 3.54 fb-1, collected with the CMS detector at the LHC. The cross section is determined through an unbinned maximum likelihood fit of background and t̄t signal to the reconstructed mass spectrum of t̄t candidates in the data, in which events are subjected to a kinematic fit assuming a t̄t → W+bW-̄b → 6 jets hypothesis. The measurement yields σt̄t = 139±10(stat.)±26(syst.)±3(lum.)pb, a result consistent with those obtained in other t̄t decay channels, as well as with predictions of the standard model. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
Invariant mass spectra for jets reconstructed using the anti-k T and CambridgeAachen algorithms are studied for different jet grooming techniques in data corresponding to an integrated luminosity of 5 fb-1, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
A detailed description is reported of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson. The data sample corresponds to integrated luminosities up to 5.1 fb-1 at √=7 TeV, and up to 5.3 fb-1 at √ s=8 TeV. The results for five Higgs boson decay modes γγ, ZZ, WW, ττ, and bb, which show a combined local significance of 5 standard deviations near 125 GeV, are reviewed. A fit to the invariant mass of the two high resolution channels, γγ and ZZ → 4ℓ, gives a mass estimate of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The measurements are interpreted in the context of the standard model Lagrangian for the scalar Higgs field interacting with fermions and vector bosons. The measured values of the corresponding couplings are compared to the standard model predictions. The hypothesis of custodial symmetry is tested through the measurement of the ratio of the couplings to the W and Z bosons. All the results are consistent, within their uncertainties, with the expectations for a standard model Higgs boson. [Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
We investigate the possibilities of New Physics affecting the Standard Model (SM) Higgs sector. An effective Lagrangian with dimension-six operators is used to capture the effect of New Physics. We carry out a global Bayesian inference analysis, considering the recent LHC data set including all available correlations, as well as results from Tevatron. Trilinear gauge boson couplings and electroweak precision observables are also taken into account. The case of weak bosons tensorial couplings is closely examined and NLO QCD corrections are taken into account in the deviations we predict. We consider two scenarios, one where the coefficients of all the dimension-six operators are essentially unconstrained, and one where a certain subset is loop suppressed. In both scenarios, we find that large deviations from some of the SM Higgs couplings can still be present, assuming New Physics arising at 3 TeV. In particular, we find that a significantly reduced coupling of the Higgs to the top quark is possible and slightly favored by searches on Higgs production in association with top quark pairs. The total width of the Higgs boson is only weakly constrained and can vary between 0.7 and 2.7 times the Standard Model value within 95% Bayesian credible interval (BCI). We also observe sizeable effects induced by New Physics contributions to tensorial couplings. In particular, the Higgs boson decay width into Zγ can be enhanced by up to a factor 12 within 95% BCI. © 2013 SISSA.
Resumo:
A search for exclusive or quasi-exclusive W+W- production by photon-photon interactions, pp → p(*)W +W-p(*), at √s=7 TeV is reported using data collected by the CMS detector with an integrated luminosity of 5.05 fb-1. Events are selected by requiring a μ ±e∓ vertex with no additional associated charged tracks and dilepton transverse momentum p T(μ ±e∓) > 30 GeV. Two events passing all selection requirements are observed in the data, compared to a standard model expectation of 2.2 ± 0.4 signal events with 0.84 ± 0.15 background. The tail of the dilepton p T distribution is studied for deviations from the standard model. No events are observed with p T > 100 GeV. Model-independent upper limits are computed and compared to predictions involving anomalous quartic gauge couplings. The limits on the parameters α0,C W/λ2 with a dipole form factor and an energy cutoff Λcutoff = 500 GeV are of the order of 10-4. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
We study resonant pair production of heavy particles in fully hadronic final states by means of jet substructure techniques. We propose a new resonance tagging strategy that smoothly interpolates between the highly boosted and fully resolved regimes, leading to uniform signal efficiencies and background rejection rates across a broad range of masses. Our method makes it possible to efficiently replace independent experimental searches, based on different final state topologies, with a single common analysis. As a case study, we apply our technique to pair production of Higgs bosons decaying into b\overline{b} pairs in generic New Physics scenarios. We adopt as benchmark models radion and massive KK graviton production in warped extra dimensions. We find that despite the overwhelming QCD background, the 4b final state has enough sensitivity to provide a complementary handle in searches for enhanced Higgs pair production at the LHC. © 2013 SISSA.
Resumo:
A measurement of the λb 0 lifetime using the decay λb 0-1, was recorded with the CMS experiment at the Large Hadron Collider using triggers that selected dimuon events in the J/ψ mass region. The λb 0 lifetime is measured to be 1.503 ± 0.052 (stat.) ± 0.031 (syst.) ps. [Figure not available: see fulltext.] © 2013 Cern for the benefit of the CMS collaboration.
Resumo:
A measurement is presented of the ZZ production cross section in the ZZ -> 2l2l' decay mode with l = e, mu and l' = e, mu, tau in proton-proton collisions at root s = 7 TeV with the CMS experiment at the LHC. Results are based on data corresponding to an integrated luminosity of 5.0 fb(-1). The measured cross section sigma(pp -> ZZ) = 6.24(-080)(+0.86) (stat.)(-0.32)(+0.41) (syst.) +/- 0.14 (lumi.) pb is consistent with the standard model predictions. The following limits on ZZZ and ZZ-gamma anomalous trilinear gauge couplings are set at 95% confidence level: -0.011 < f(4)(Z) < 0.012, -0.012 < f(5)(Z) < 0.012, -0.013 < f(4)(gamma) < 0.015, and -0.014 < f(5)(gamma) < 0.014.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)