983 resultados para Performance(engineering)
Resumo:
During 1999 the Department of Industry, Science and Resources (ISR) published 4 research reports it had commissioned from the Australian Expert Group in Industry Studies (AEGIS), a research centre of the University of Western Sydney, Macarthur. ISR will shortly publish the fifth and final report in this series. The five reports were commissioned by the Department, as part of the Building and Construction Action Agenda process, to investigate the dynamics and performance of the sector, particularly in relation its innovative capacity. Professor Jane Marceau, PVCR at the University of Western Sydney and Director of AEGIS, led the research team. Dr Karen Manley was the researcher and joint author on three of the five reports. This paper outlines the approach and key findings of each of the five reports. The reports examined 5 key elements of the ‘building and construction product system’. The term ‘product system’ reflects the very broad range of industries and players we consider to contribute to the performance of the building and construction industries. The term ‘product system’ also highlights our focus on the systemic qualities of the building and construction industries. We were most interested in the inter-relationships between key segments and players and how these impacted on the innovation potential of the product system. The ‘building and construction product system’ is hereafter referred to as ‘the industry’ for ease of presentation. All the reports are based, at least in part, on an interviewing or survey research phase which involved gathering data from public and private sector players nationally. The first report ‘maps’ the industry to identify and describe its key elements and the inter-relationships between them. The second report focuses specifically on the linkages between public-sector research organisations and firms in the industry. The third report examines the conditions surrounding the emergence of new businesses in the industry. The fourth report examines how manufacturing businesses are responding to customer demands for ‘total solutions’ to their building and construction needs, by providing various services to clients. The fifth report investigates the capacity of the industry to encourage and undertake energy efficient building design and construction.
Resumo:
A novel and comprehensive testing approach to examine the performance of gross pollutant traps (GPTs) was developed. A proprietary GPT with internal screens for capturing gross pollutants—organic matter and anthropogenic litter—was used as a case study. This work is the first investigation of its kind and provides valuable practical information for the design, selection and operation of GPTs and also the management of street waste in an urban environment. It used a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The results showed that the GPT operated efficiently until at least 68% of the screens were blocked, particularly at high flow rates. At lower flow rates, the high capture/retention performance trend was reversed. It was also found that a raised inlet GPT offered a better capture/retention performance. This finding indicates that cleaning operations could be more effectively planned in conjunction with the deterioration in GPT’s capture/retention performance.
Resumo:
This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a standalone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells powering a nanosensor and a transmitter under different weather conditions. We analyze trends of energy conversion efficiency after 60 days of operation. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a variable programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. Although this technology is at an early stage of development, these experiments provide useful data for future outdoor applications such as nanosensor network nodes.
Resumo:
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver's hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony - namely road design and road side variability - decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver's decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver's sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.
Resumo:
Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.
Resumo:
This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a stand-alone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells and devices under different weather conditions. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. These experiments provide useful data for future outdoor applications such as nanosensor networks.
Resumo:
Numerous tools and techniques have been developed to eliminate or reduce waste and carry out lean concepts in the manufacturing environment. However, appropriate lean tools need to be selected and implemented in order to fulfil the manufacturer needs within their budgetary constraints. As a result, it is important to identify manufacturer needs and implement only those tools, which contribute maximum benefit to their needs. In this research a mathematical model is proposed for maximising the perceived value of manufacturer needs and developed a step-by-step methodology to select best performance metrics along with appropriate lean strategies within the budgetary constraints. With the help of a case study, the proposed model and method have been demonstrated.
Resumo:
This panel discusses the impact of Green IT on information systems and how information systems can meet environmental challenges and ensure sustainability. We wish to highlight the role of green business processes, and specifically the contributions that the management of these processes can play in leveraging the transformative power of IS in order to create an environmentally sustainable society. The management of business processes has typically been thought of in terms of business improvement alongside the dimensions time, cost, quality, or flexibility – the so-called ‘devil’s quadrangle’. Contemporary organizations, however, increasingly become aware of the need to create more sustainable, IT-enabled business processes that are also successful in terms of their economic, ecological, as well as social impact. Exemplary ecological key performance indicators that increasingly find their way into the agenda of managers include carbon emissions, data center energy, or renewable energy consumption (SAP 2010). The key challenge, therefore, is to extend the devil’s quadrangle to a devil’s pentagon, including sustainability as an important fifth dimension in process change.
Resumo:
The aim of the study is to establish optimum building aspect ratios and south window sizes of residential buildings from thermal performance point of view. The effects of 6 different building aspect ratios and eight different south window sizes for each building aspect ratio are analyzed for apartments located at intermediate floors of buildings, by the aid of the computer based thermal analysis program SUNCODE-PC in five cities of Turkey: Erzurum, Ankara, Diyarbakir, Izmir, and Antalya. The results are evaluated in terms of annual energy consumption and the optimum values are driven. Comparison of optimum values and the total energy consumption rates is made among the analyzed cities.
Resumo:
Insulated rail joints (IRJs) possess lower bending stiffness across the gap containing insulating endpost and hence are subjected to wheel impact. IRJs are either square cut or inclined cut to the longitudinal axis of the rails in a vertical plane. It is generally claimed that the inclined cut IRJs outperformed the square cut IRJs; however, there is a paucity of literature with regard to the relative structural merits of these two designs. This article presents comparative studies of the structural response of these two IRJs to the passage of wheels based on continuously acquired field data from joints strain-gauged closer to the source of impact. Strain signatures are presented in time, frequency, and avelet domains and the peak vertical and shear strains are systematically employed to examine the relative structural merits of the two IRJs subjected to similar real-life loading. It is shown that the inclined IRJs resist the wheel load with higher peak shear strains and lower peak vertical strains than that of the square IRJs.