953 resultados para Perforated wooden slab
Resumo:
Acknowledgements The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).
Resumo:
The paper presents the analysis of an important historical building: the Saint James Theater in the city of Corfù (Greece) actually used as the Municipality House. The building, located in the center of the city, is made of carves stones and is characterized by a stocky shape and by the presence of wooden floors. The study deals with the structural identification of such structure through the analysis of its ambient vibrations recorded by means of accelerometers with high accuracy. A full dynamic testing was developed using ambient vibrations to identify the main modal parameters and to make a non-destructive characterization of this building. The results of these dynamic tests are compared with the modal analysis of a complex finite element (FE) simulation of the structure. This analysis may present several problems and uncertainties for this stocky building. Due to the presence of wooden floors, the local modes can be highly excited and, as a consequence, the evaluation of the structural modal parameters presents some difficulties.
Resumo:
Most of the analytical models devoted to determine the acoustic properties of a rigid perforated panel consider the acoustic impedance of a single hole and then use the porosity to determine the impedance for the whole panel. However, in the case of not homogeneous hole distribution or more complex configurations this approach is no longer valid. This work explores some of these limitations and proposes a finite element methodology that implements the linearized Navier Stokes equations in the frequency domain to analyse the acoustic performance under normal incidence of perforated panel absorbers. Some preliminary results for a homogenous perforated panel show that the sound absorption coefficient derived from the Maa analytical model does not match those from the simulations. These differences are mainly attributed to the finite geometry effect and to the spatial distribution of the perforations for the numerical case. In order to confirm these statements, the acoustic field in the vicinities of the perforations is analysed for a more complex configuration of perforated panel. Additionally, experimental studies are carried out in an impedance tube for the same configuration and then compared to previous methods. The proposed methodology is shown to be in better agreement with the laboratorial measurements than the analytical approach.
Resumo:
The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as good thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering material insulation inside the cavities. The time-temperature history and the residual cross-section of wooden slabs were numerically measured and analysed.
Resumo:
Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materials like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood burns quite easily and produces a great deal of heat energy. The main disadvantage is the high level of combustion when exposed to fire, where the point at which it catches fire is from 200–400°C. After fire exposure, is need to determine if the charred wooden structures are safe for future use. Design methods require the use of computer modelling to predict the fire exposure and the capacity of structures to resist those action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood structures exposed to fire, because predicts the charring rate as a function of fire exposure. The charring rate calculation of most structural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materials. In this work, the authors present different case studies using numerical models, that will help professionals analysing woods elements and the type of information needed to decide whether the charred structures are adequate or not to use. Different thermal models representing wooden cellular slabs, used in building construction for ceiling or flooring compartments, will be analysed and submitted to different fire scenarios (with the standard fire curve exposure). The same numerical models, considering insulation material inside the wooden cellular slabs, will be tested to compare and determine the fire time resistance and the charring rate calculation.
Resumo:
Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materiais like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood does bum quite easily md produces a great deal ofheat energy. The main disadvantage is the high levei ofcombustion when exposed to fíre, where the point at which it catches fire is fi-om 200-400°C. After fu-e exposure, is need to determine if the charred wooden stmctures are safe for future use. Design methods require the use ofcomputer modelling to predict the fíre exposure and the capacity ofstructures to resist fhose action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood stmctures exposed to fire, because predicts the charring rate as a fünction offire exposure. The charring rate calculation ofmost stmctural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materiais.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: U.S. Department of Commerce. Daniel C. Roper, secretary. Bureau of Foreign and Domestic Commerce. Alexander V. Dye, director ...
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"United Nations publications sales number: 1953.II.H4"--T.p. verso.
Resumo:
"January 1961."
Resumo:
"William McFee's sea library": p. 12.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: 1921- : Department of Commerce ... Bureau of the Census ...