763 resultados para Pbs Nanocrystals
Resumo:
The characteristic topographical features (crystallite dimensions, surface morphology and roughness) of bioceramics may influence the adsorption of proteins relevant to bone regeneration. This work aims at analyzing the influence of two distinct nanophased hydroxyapatite (HA) ceramics, HA725 and HA1000 on fibronectin (FN) and osteonectin (ON) adsorption and MC3T3-E1 osteoblast adhesion and morphology. Both substrates were obtained using the same hydroxyapatite nanocrystals aggregates and applying the sintering temperatures of 725ºC and 1000ºC, respectively. The two proteins used in this work, FN as an adhesive glycoprotein and ON as a counter-adhesive protein, are known to be involved in the early stages of osteogenesis (cell adhesion, mobility and proliferation). The properties of the nanoHA substrates had an important role in the adsorption behavior of the two studied proteins and clearly affected the MC3T3- E1 morphology, distribution and metabolic activity. HA1000 surfaces presenting slightly larger grain size, higher root-mean-square roughness (Rq), lower surface area and porosity, allowed for higher amounts of both proteins adsorbed. These substrates also revealed increased number of exposed FN cell-binding domains as well as higher affinity for osteonectin. Regarding the osteoblast adhesion results, improved viability and cell number were found for HA1000 surfaces as compared to HA725 ones, independently of the presence or type of adsorbed protein. Therefore the osteoblast adhesion and metabolic activity seemed to be more sensitive to surfaces morphology and roughness than to the type of adsorbed proteins.
Resumo:
O teste de imunofluorescência indireta (IFI) é considerado teste de referência na soroiogia da malária. Neste trabalho procuramos optimizar o teste empregando P. falciparum obtido de sangue humano e de cultura e P. vivax obtido de sangue de paciente como antígenos, para pesquisa de anticorpos IgG e IgM. Das variáveis técnicas estudadas melhores resultados foram obtidos quando os soros foram diluidos ern PBS contendo 1% de Tween 80 e as lâminas contendo a suspensão antigênica foram estabilizadas em dessecadores ou fixadas com acetona. Foi também padronizado o teste imunoenzimático ELISA com antigenos de P. falciparum obtidos em cultura. O estudo comparativo com o teste de imunofluorescência indireta para pesquisa de anticorpos IgG mostrou: a) nos pacientes primo infectados por P. falciparum a sensibilidade para ambos os testes foi de 71%; b) nos pacientes primo infectados pelo P. vivax a sensibilidade foi de 40% para ambos os testes; c) nos pacientes não primo infectados e com malária atual pelo P. falciparum a sensibilidade para ambos os testes foi de 100%; d) nos pacientes não primo infectados e com malária atual pelo P. vivax a sensibilidade foi de 85% para o teste ELISA e de 92% para a IFI; e) nos pacientes com malária mista a sensibilidade para ambos os testes foi de 100%. A especificidade da IFI foi de 100% e do teste ELISA 95% nos casos de indivíduos não maláricos. Os resultados obtidos sugerem ser o teste ELISA, uma boa alternativa para o teste de IFI, para a pesquisa de anticorpos IgG anti P. falciparum, na soroiogia da malária.
Resumo:
Abstract Background: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.
Resumo:
Cellulose acetate (CA)-silver (Ag) nanocomposite asymmetric membranes were prepared via the wet-phase inversion method by dispersing polyvinylpirrolydone-protected Ag nanoparticles in the membrane casting solutions of different compositions. Silver nanoparticles were synthesized ex situ and added to the casting solution as a concentrated aqueous colloidal dispersion. The effects of the dispersion addition on the structure and on the selective permeation properties of the membranes were studied by comparing the nanocomposites with the silver-free materials. The casting solution composition played an important role in the adequate dispersion of the silver nanoparticles in the membrane. Incorporation of nanoscale silver and the final silver content resulted in structural changes leading to an increase in the hydraulic permeability and molecular weight cut-off of the nanocomposite membranes. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41796.
Resumo:
Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering
Resumo:
A serological survey, involving indirect immunofluorescence testing of blood sera samples, was carried out on the residents of one in every five dwellings in the town of Barcelos (in the northern part of the State of Amazonas, on the right bank of the Rio Negro, 490 Km from Manaus by river) and on the rural populations of the villages of Piloto and Marará (also on the right bank of the Rio Negro, 30 minutes by boat from Barcelos). A total of 710 sera samples were tested, 628 from the resident population in the town of Barcelos, 35 from Piloto and 47 from Marará. The tests were carried out using human anti-gammaglobulin type IgG (Biolab) and antigen from formolized culture of T.cruzi Y strain. The sera were serially diluted from 1:40 to 1:320 in PBS 7.2. Of the 710 samples examined 89(12.5%) were positive for anti-T.cruzi antibodies: 2 of these (2.2%) at a dilution of 1:320; 12(13.4%) at 1:160; 38 (42.6%) at 1:80; and the remainder at 1:40, giving a median serological dilution of 1:80. The following questions are discussed: the high serological prevalence for Chagas'infection found in our survey; the possibility of serological cross-reactions; the need for confirmatory tests for the positives reactions; and the strong correlation between our results and preliminary epidemiological data (such as the level of human contact with wild triatominae, know locally as "Piacava's lice". We draw attention to the isolation by xenodiagnosis of one strain of T.cruzi from a patient with positive serology for Chagas' infection.
Resumo:
The authors studied 70 leprosy patients and 20 normal individuals, comparing the traditional sera collection method and the finger prick blood with the conservation on filter paper for specific antibodies against the native phenolic glycolipid-I (PGL-I) from Mycobacterium leprae. The finger prick blood dried on filter paper was eluated in phosphate buffer saline (PBS) containing 0.5% gelatin. The classical method for native PGL-I was performed for these eluates, and compared with the antibody determination for sera. It was observed that there is a straight correlation comparing these two methods; although the titles found for the eluates were lower than those obtained for serology. This blood collection method could be useful for investigation of new leprosy cases in field, specially in contacts individuals.
Resumo:
Patients with paracoccidioidomycosis often present pulmonary fibrosis and exhibit important respiratory limitations. Based on an already established animal model, the contribution of viable and non-viable P. brasiliensis propagules to the development of fibrosis was investigated. BALB/c male mice, 4-6 weeks old were inoculated intranasally either with 4x10(6 )viable conidia (Group I), or 6.5x10(6) fragmented yeast cells (Group II). Control animals received PBS. Six mice per period were sacrificed at 24, 48, 72h (initial) and 1, 2, 4, 8, 12 and 16 weeks post-challenge (late). Paraffin embedded lungs were sectioned and stained with H&E, trichromic (Masson), reticulin and Grocott´s. During the initial period PMNs influx was important in both groups and acute inflammation involving 34% to 45% of the lungs was noticed. Later on, mononuclear cells predominated. In group I, the inflammation progressed and granulomas were formed and by the 12th week they fussed and became loose. Thick collagen I fibers were observed in 66.6% and 83.3% of the animals at 8 and 12 weeks, respectively. Collagen III, thick fibers became apparent in some animals at 4weeks and by 12 weeks, 83% of them exhibited alterations in the organization and thickness of these elements. In group II mice, this pattern was different with stepwise decrease in the number of inflammatory foci and lack of granulomas. Although initially most animals in this group had minor alterations in thin collagen I fibers, they disappeared by the 4th week. Results indicate that tissue response to fragmented yeast cells was transitory while viable conidia evoked a progressive inflammatory reaction leading to granuloma formation and to excess production and/or disarrangement of collagens I and III; the latter led to fibrosis.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção de Grau de Mestre em Engenharia Biomédica
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
1st ASPIC International Congress
Resumo:
Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
Paracoccidioidomycosis (PCM) is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb) and corresponds to prevalent systemic mycosis in Latin America. The aim of the present work was to evaluate the dose response effect of the fungal yeast phase for the standardization of an experimental model of septic arthritis. The experiments were performed with groups of 14 rats that received doses of 103, 104 or 105 P. brasiliensis (Pb18) cells. The fungi were injected in 50 µL of phosphate-buffered saline (PBS) directly into the knee joints of the animals. The following parameters were analyzed in this work: the formation of swelling in knees infused with yeast cells and the radiological and anatomopathological alterations, besides antibody titer by ELISA. After 15 days of infection, signs of inflammation were evident. At 45 days, some features of damage and necrosis were observed in the articular cartilage. The systemic dissemination of the fungus was observed in 11% of the inoculated animals, and it was concluded that the experimental model is able to mimic articular PCM in humans and that the dose of 105 yeast cells can be used as standard in this model.