929 resultados para Pattern-search methods
Resumo:
The Project you are about to see it is based on the technologies used on object detection and recognition, especially on leaves and chromosomes. To do so, this document contains the typical parts of a scientific paper, as it is what it is. It is composed by an Abstract, an Introduction, points that have to do with the investigation area, future work, conclusions and references used for the elaboration of the document. The Abstract talks about what are we going to find in this paper, which is technologies employed on pattern detection and recognition for leaves and chromosomes and the jobs that are already made for cataloguing these objects. In the introduction detection and recognition meanings are explained. This is necessary as many papers get confused with these terms, specially the ones talking about chromosomes. Detecting an object is gathering the parts of the image that are useful and eliminating the useless parts. Summarizing, detection would be recognizing the objects borders. When talking about recognition, we are talking about the computers or the machines process, which says what kind of object we are handling. Afterwards we face a compilation of the most used technologies in object detection in general. There are two main groups on this category: Based on derivatives of images and based on ASIFT points. The ones that are based on derivatives of images have in common that convolving them with a previously created matrix does the treatment of them. This is done for detecting borders on the images, which are changes on the intensity of the pixels. Within these technologies we face two groups: Gradian based, which search for maximums and minimums on the pixels intensity as they only use the first derivative. The Laplacian based methods search for zeros on the pixels intensity as they use the second derivative. Depending on the level of details that we want to use on the final result, we will choose one option or the other, because, as its logic, if we used Gradian based methods, the computer will consume less resources and less time as there are less operations, but the quality will be worse. On the other hand, if we use the Laplacian based methods we will need more time and resources as they require more operations, but we will have a much better quality result. After explaining all the derivative based methods, we take a look on the different algorithms that are available for both groups. The other big group of technologies for object recognition is the one based on ASIFT points, which are based on 6 image parameters and compare them with another image taking under consideration these parameters. These methods disadvantage, for our future purposes, is that it is only valid for one single object. So if we are going to recognize two different leaves, even though if they refer to the same specie, we are not going to be able to recognize them with this method. It is important to mention these types of technologies as we are talking about recognition methods in general. At the end of the chapter we can see a comparison with pros and cons of all technologies that are employed. Firstly comparing them separately and then comparing them all together, based on our purposes. Recognition techniques, which are the next chapter, are not really vast as, even though there are general steps for doing object recognition, every single object that has to be recognized has its own method as the are different. This is why there is not a general method that we can specify on this chapter. We now move on into leaf detection techniques on computers. Now we will use the technique explained above based on the image derivatives. Next step will be to turn the leaf into several parameters. Depending on the document that you are referring to, there will be more or less parameters. Some papers recommend to divide the leaf into 3 main features (shape, dent and vein] and doing mathematical operations with them we can get up to 16 secondary features. Next proposition is dividing the leaf into 5 main features (Diameter, physiological length, physiological width, area and perimeter] and from those, extract 12 secondary features. This second alternative is the most used so it is the one that is going to be the reference. Following in to leaf recognition, we are based on a paper that provides a source code that, clicking on both leaf ends, it automatically tells to which specie belongs the leaf that we are trying to recognize. To do so, it only requires having a database. On the tests that have been made by the document, they assure us a 90.312% of accuracy over 320 total tests (32 plants on the database and 10 tests per specie]. Next chapter talks about chromosome detection, where we shall pass the metaphasis plate, where the chromosomes are disorganized, into the karyotype plate, which is the usual view of the 23 chromosomes ordered by number. There are two types of techniques to do this step: the skeletonization process and swiping angles. Skeletonization progress consists on suppressing the inside pixels of the chromosome to just stay with the silhouette. This method is really similar to the ones based on the derivatives of the image but the difference is that it doesnt detect the borders but the interior of the chromosome. Second technique consists of swiping angles from the beginning of the chromosome and, taking under consideration, that on a single chromosome we cannot have more than an X angle, it detects the various regions of the chromosomes. Once the karyotype plate is defined, we continue with chromosome recognition. To do so, there is a technique based on the banding that chromosomes have (grey scale bands] that make them unique. The program then detects the longitudinal axis of the chromosome and reconstructs the band profiles. Then the computer is able to recognize this chromosome. Concerning the future work, we generally have to independent techniques that dont reunite detection and recognition, so our main focus would be to prepare a program that gathers both techniques. On the leaf matter we have seen that, detection and recognition, have a link as both share the option of dividing the leaf into 5 main features. The work that would have to be done is to create an algorithm that linked both methods, as in the program, which recognizes leaves, it has to be clicked both leaf ends so it is not an automatic algorithm. On the chromosome side, we should create an algorithm that searches for the beginning of the chromosome and then start to swipe angles, to later give the parameters to the program that searches for the band profiles. Finally, on the summary, we explain why this type of investigation is needed, and that is because with global warming, lots of species (animals and plants] are beginning to extinguish. That is the reason why a big database, which gathers all the possible species, is needed. For recognizing animal species, we just only have to have the 23 chromosomes. While recognizing a plant, there are several ways of doing it, but the easiest way to input a computer is to scan the leaf of the plant. RESUMEN. El proyecto que se puede ver a continuación trata sobre las tecnologías empleadas en la detección y reconocimiento de objetos, especialmente de hojas y cromosomas. Para ello, este documento contiene las partes típicas de un paper de investigación, puesto que es de lo que se trata. Así, estará compuesto de Abstract, Introducción, diversos puntos que tengan que ver con el área a investigar, trabajo futuro, conclusiones y biografía utilizada para la realización del documento. Así, el Abstract nos cuenta qué vamos a poder encontrar en este paper, que no es ni más ni menos que las tecnologías empleadas en el reconocimiento y detección de patrones en hojas y cromosomas y qué trabajos hay existentes para catalogar a estos objetos. En la introducción se explican los conceptos de qué es la detección y qué es el reconocimiento. Esto es necesario ya que muchos papers científicos, especialmente los que hablan de cromosomas, confunden estos dos términos que no podían ser más sencillos. Por un lado tendríamos la detección del objeto, que sería simplemente coger las partes que nos interesasen de la imagen y eliminar aquellas partes que no nos fueran útiles para un futuro. Resumiendo, sería reconocer los bordes del objeto de estudio. Cuando hablamos de reconocimiento, estamos refiriéndonos al proceso que tiene el ordenador, o la máquina, para decir qué clase de objeto estamos tratando. Seguidamente nos encontramos con un recopilatorio de las tecnologías más utilizadas para la detección de objetos, en general. Aquí nos encontraríamos con dos grandes grupos de tecnologías: Las basadas en las derivadas de imágenes y las basadas en los puntos ASIFT. El grupo de tecnologías basadas en derivadas de imágenes tienen en común que hay que tratar a las imágenes mediante una convolución con una matriz creada previamente. Esto se hace para detectar bordes en las imágenes que son básicamente cambios en la intensidad de los píxeles. Dentro de estas tecnologías nos encontramos con dos grupos: Los basados en gradientes, los cuales buscan máximos y mínimos de intensidad en la imagen puesto que sólo utilizan la primera derivada; y los Laplacianos, los cuales buscan ceros en la intensidad de los píxeles puesto que estos utilizan la segunda derivada de la imagen. Dependiendo del nivel de detalles que queramos utilizar en el resultado final nos decantaremos por un método u otro puesto que, como es lógico, si utilizamos los basados en el gradiente habrá menos operaciones por lo que consumirá más tiempo y recursos pero por la contra tendremos menos calidad de imagen. Y al revés pasa con los Laplacianos, puesto que necesitan más operaciones y recursos pero tendrán un resultado final con mejor calidad. Después de explicar los tipos de operadores que hay, se hace un recorrido explicando los distintos tipos de algoritmos que hay en cada uno de los grupos. El otro gran grupo de tecnologías para el reconocimiento de objetos son los basados en puntos ASIFT, los cuales se basan en 6 parámetros de la imagen y la comparan con otra imagen teniendo en cuenta dichos parámetros. La desventaja de este método, para nuestros propósitos futuros, es que sólo es valido para un objeto en concreto. Por lo que si vamos a reconocer dos hojas diferentes, aunque sean de la misma especie, no vamos a poder reconocerlas mediante este método. Aún así es importante explicar este tipo de tecnologías puesto que estamos hablando de técnicas de reconocimiento en general. Al final del capítulo podremos ver una comparación con los pros y las contras de todas las tecnologías empleadas. Primeramente comparándolas de forma separada y, finalmente, compararemos todos los métodos existentes en base a nuestros propósitos. Las técnicas de reconocimiento, el siguiente apartado, no es muy extenso puesto que, aunque haya pasos generales para el reconocimiento de objetos, cada objeto a reconocer es distinto por lo que no hay un método específico que se pueda generalizar. Pasamos ahora a las técnicas de detección de hojas mediante ordenador. Aquí usaremos la técnica explicada previamente explicada basada en las derivadas de las imágenes. La continuación de este paso sería diseccionar la hoja en diversos parámetros. Dependiendo de la fuente a la que se consulte pueden haber más o menos parámetros. Unos documentos aconsejan dividir la morfología de la hoja en 3 parámetros principales (Forma, Dentina y ramificación] y derivando de dichos parámetros convertirlos a 16 parámetros secundarios. La otra propuesta es dividir la morfología de la hoja en 5 parámetros principales (Diámetro, longitud fisiológica, anchura fisiológica, área y perímetro] y de ahí extraer 12 parámetros secundarios. Esta segunda propuesta es la más utilizada de todas por lo que es la que se utilizará. Pasamos al reconocimiento de hojas, en la cual nos hemos basado en un documento que provee un código fuente que cucando en los dos extremos de la hoja automáticamente nos dice a qué especie pertenece la hoja que estamos intentando reconocer. Para ello sólo hay que formar una base de datos. En los test realizados por el citado documento, nos aseguran que tiene un índice de acierto del 90.312% en 320 test en total (32 plantas insertadas en la base de datos por 10 test que se han realizado por cada una de las especies]. El siguiente apartado trata de la detección de cromosomas, en el cual se debe de pasar de la célula metafásica, donde los cromosomas están desorganizados, al cariotipo, que es como solemos ver los 23 cromosomas de forma ordenada. Hay dos tipos de técnicas para realizar este paso: Por el proceso de esquelotonización y barriendo ángulos. El proceso de esqueletonización consiste en eliminar los píxeles del interior del cromosoma para quedarse con su silueta; Este proceso es similar a los métodos de derivación de los píxeles pero se diferencia en que no detecta bordes si no que detecta el interior de los cromosomas. La segunda técnica consiste en ir barriendo ángulos desde el principio del cromosoma y teniendo en cuenta que un cromosoma no puede doblarse más de X grados detecta las diversas regiones de los cromosomas. Una vez tengamos el cariotipo, se continua con el reconocimiento de cromosomas. Para ello existe una técnica basada en las bandas de blancos y negros que tienen los cromosomas y que son las que los hacen únicos. Para ello el programa detecta los ejes longitudinales del cromosoma y reconstruye los perfiles de las bandas que posee el cromosoma y que lo identifican como único. En cuanto al trabajo que se podría desempeñar en el futuro, tenemos por lo general dos técnicas independientes que no unen la detección con el reconocimiento por lo que se habría de preparar un programa que uniese estas dos técnicas. Respecto a las hojas hemos visto que ambos métodos, detección y reconocimiento, están vinculados debido a que ambos comparten la opinión de dividir las hojas en 5 parámetros principales. El trabajo que habría que realizar sería el de crear un algoritmo que conectase a ambos ya que en el programa de reconocimiento se debe clicar a los dos extremos de la hoja por lo que no es una tarea automática. En cuanto a los cromosomas, se debería de crear un algoritmo que busque el inicio del cromosoma y entonces empiece a barrer ángulos para después poder dárselo al programa que busca los perfiles de bandas de los cromosomas. Finalmente, en el resumen se explica el por qué hace falta este tipo de investigación, esto es que con el calentamiento global, muchas de las especies (tanto animales como plantas] se están empezando a extinguir. Es por ello que se necesitará una base de datos que contemple todas las posibles especies tanto del reino animal como del reino vegetal. Para reconocer a una especie animal, simplemente bastará con tener sus 23 cromosomas; mientras que para reconocer a una especie vegetal, existen diversas formas. Aunque la más sencilla de todas es contar con la hoja de la especie puesto que es el elemento más fácil de escanear e introducir en el ordenador.
Resumo:
Mode of access: Internet.
Resumo:
Thesis--Illinois.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The present thesis investigates pattern glare susceptibility following stroke and the immediate and prolonged impact of prescribing optimal spectral filters on reading speed, accuracy and visual search performance. Principal observations: A case report has shown that visual stress can occur following stroke. The use of spectral filters and precision tinted lenses proved to be a successful intervention in this case, although the parameters required modification following a further stroke episode. Stroke subjects demonstrate elevated levels of pattern glare compared to normative data values and a control group. Initial use of an optimal spectral filter in a stroke cohort increased reading speed by ~6% and almost halved error scores, findings not replicated in a control group. With the removal of migraine subjects reading speed increased by ~8% with an optimal filter and error scores almost halved. Prolonged use of an optimal spectral filter for stroke subjects, increased reading speed by >9% and error scores more than halved. When the same subjects switched to prolonged use of a grey filter, reading speed reduced by ~4% and error scores increased marginally. When a second group of stroke subjects used a grey filter first, reading speed decreased by ~3% but increased by ~3% with prolonged use of an optimal filter, with error scores almost halving; these findings persisted with migraine subjects excluded. Initial use of an optimal spectral filter improved visual search response time but not error scores in a stroke cohort with migraine subjects excluded. Neither prolonged use of an optimal nor grey filter improved response time or reduced error scores in a stroke group; these findings persisted with the exclusion of migraine subjects.
Resumo:
Remote sensing data is routinely used in ecology to investigate the relationship between landscape pattern as characterised by land use and land cover maps, and ecological processes. Multiple factors related to the representation of geographic phenomenon have been shown to affect characterisation of landscape pattern resulting in spatial uncertainty. This study investigated the effect of the interaction between landscape spatial pattern and geospatial processing methods statistically; unlike most papers which consider the effect of each factor in isolation only. This is important since data used to calculate landscape metrics typically undergo a series of data abstraction processing tasks and are rarely performed in isolation. The geospatial processing methods tested were the aggregation method and the choice of pixel size used to aggregate data. These were compared to two components of landscape pattern, spatial heterogeneity and the proportion of landcover class area. The interactions and their effect on the final landcover map were described using landscape metrics to measure landscape pattern and classification accuracy (response variables). All landscape metrics and classification accuracy were shown to be affected by both landscape pattern and by processing methods. Large variability in the response of those variables and interactions between the explanatory variables were observed. However, even though interactions occurred, this only affected the magnitude of the difference in landscape metric values. Thus, provided that the same processing methods are used, landscapes should retain their ranking when their landscape metrics are compared. For example, highly fragmented landscapes will always have larger values for the landscape metric "number of patches" than less fragmented landscapes. But the magnitude of difference between the landscapes may change and therefore absolute values of landscape metrics may need to be interpreted with caution. The explanatory variables which had the largest effects were spatial heterogeneity and pixel size. These explanatory variables tended to result in large main effects and large interactions. The high variability in the response variables and the interaction of the explanatory variables indicate it would be difficult to make generalisations about the impact of processing on landscape pattern as only two processing methods were tested and it is likely that untested processing methods will potentially result in even greater spatial uncertainty. © 2013 Elsevier B.V.
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
Composition methods are useful when solving Ordinary Differential Equations (ODEs) as they increase the order of accuracy of a given basic numerical integration scheme. We will focus on sy-mmetric composition methods involving some basic second order symmetric integrator with different step sizes [17]. The introduction of symmetries into these methods simplifies the order conditions and reduces the number of unknowns. Several authors have worked in the search of the coefficients of these type of methods: the best method of order 8 has 17 stages [24], methods of order 8 and 15 stages were given in [29, 39, 40], 10-order methods of 31, 33 and 35 stages have been also found [24, 34]. In this work some techniques that we have built to obtain 10-order symmetric composition methods of symmetric integrators of s = 31 stages (16 order conditions) are explored. Given some starting coefficients that satisfy the simplest five order conditions, the process followed to obtain the coefficients that satisfy the sixteen order conditions is provided.
Resumo:
Presentation given at the 2016 British Educational Research Association (BERA) conference
Resumo:
OBJECTIVE: This study investigated the effect of different ferrule heights on endodontically treated premolars. MATERIAL AND METHODS: Fifty sound mandibular first premolars were endodontically treated and then restored with 7-mm fiber post (FRC Postec Plus #1 Ivoclar-Vivadent) luted with self-polymerized resin cement (Multilink, Ivoclar Vivadent) while the coronal section was restored with hybrid composite core build-up material (Tetric Ceram, Ivoclar-Vivadent), which received all-ceramic crown. Different ferrule heights were investigated: 1-mm circumferential ferrule without post and core (group 1 used as control), a circumferential 1-mm ferrule (group 2), non-uniform ferrule 2-mm buccally and 1-mm lingually (group 3), non-uniform ferrule 3-mm buccally and 2-mm lingually (group 4), and finally no ferrule preparation (group 5). The fracture load and failure pattern of the tested groups were investigated by applying axial load to the ceramic crowns (n=10). Data were analyzed statistically by one-way ANOVA and Tukey's post-hoc test was used for pair-wise comparisons (α=0.05). RESULTS: There were no significant differences among the failure load of all tested groups (P<0.780). The control group had the lowest fracture resistance (891.43±202.22 N) and the highest catastrophic failure rate (P<0.05). Compared to the control group, the use of fiber post reduced the percentage of catastrophic failure while increasing the ferrule height did not influence the fracture resistance of the restored specimens. CONCLUSIONS: Within the limitations of this study, increasing the ferrule length did not influence the fracture resistance of endodontically treated teeth restored with glass ceramic crowns. Insertion of a fiber post could reduce the percentage of catastrophic failure of these restorations under function.
Resumo:
The purpose of the present study was to assess the association between overbite and craniofacial growth pattern. The sample comprised eighty-six cephalograms obtained during the orthodontic pretreatment phase and analyzed using the Radiocef program to identify the craniofacial landmarks and perform orthodontic measurements. The variables utilized were overbite, the Jarabak percentage and the Vert index, as well as classifications resulting from the interpretation of these measurements. In all the statistical tests, a significance level of 5% was considered. Measurement reliability was checked by calculating method error. Weighted Kappa analysis showed that agreement between the facial types defined by the Vert index and the direction of growth trend established by the Jarabak percentage was not satisfactory. Owing to this lack of equivalency, a potential association between overbite and craniofacial growth pattern was evaluated using the chi-square test, considering the two methods separately. No relationship of dependence between overbite and craniofacial growth pattern was revealed by the results obtained. Therefore, it can be concluded that the classification of facial growth pattern will not be the same when considering the Jarabak and the Ricketts anayses, and that increased overbite cannot be associated with a braquifacial growth pattern, nor can openbite be associated with a dolichofacial growth pattern.
Resumo:
Onion (Allium cepa) is one of the most cultivated and consumed vegetables in Brazil and its importance is due to the large laborforce involved. One of the main pests that affect this crop is the Onion Thrips (Thrips tabaci), but the spatial distribution of this insect, although important, has not been considered in crop management recommendations, experimental planning or sampling procedures. Our purpose here is to consider statistical tools to detect and model spatial patterns of the occurrence of the onion thrips. In order to characterize the spatial distribution pattern of the Onion Thrips a survey was carried out to record the number of insects in each development phase on onion plant leaves, on different dates and sample locations, in four rural properties with neighboring farms under different infestation levels and planting methods. The Mantel randomization test proved to be a useful tool to test for spatial correlation which, when detected, was described by a mixed spatial Poisson model with a geostatistical random component and parameters allowing for a characterization of the spatial pattern, as well as the production of prediction maps of susceptibility to levels of infestation throughout the area.
Resumo:
CONTEXTO: A hipótese monoaminérgica da depressão não responde a uma série de questões, tais como "quais as causas dos distúrbios monoaminérgicos?" e "como explicar uma taxa de 30% de refratariedade aos antidepressivos?". Sendo assim, outras teorias têm sido propostas, entre elas, aquelas que enfocam as participações dos sistemas imune e endócrino. OBJETIVOS: Analisar criticamente o papel do sistema de resposta imunoinflamatória na depressão e discutir a interação dos antidepressivos com esse sistema, tanto do ponto de vista básico como clínico. MÉTODOS: Realizou-se pesquisa bibliográfica utilizando-se as bases de dados MedLine e SciELO. RESULTADOS: Pacientes vítimas de estresse crônico e depressão apresentam ativação das respostas imunoinflamatórias e do eixo hipotálamo-hipófise-adrenal, os quais, direta ou indiretamente, influenciam a neurotransmissão. Nesse sentido, a utilização de antidepressivos não apenas aumenta a disponibilidade de neurotransmissores na fenda sináptica, mas também induz mudança do padrão de resposta imune Th1 - pró-inflamatório - para o Th2, que é antiinflamatório. Além disso, sabe-se que pacientes não responsivos aos antidepressivos possuem o sistema imuneinflamatório mais ativo. No entanto, há uma série de dados controversos na literatura, havendo indícios de um perfil imune diferente de acordo com o tipo de depressão. CONCLUSÕES: A compreensão de aspectos neuroimunes presentes na depressão poderia contribuir para um melhor entendimento das bases biológicas desse transtorno e, possivelmente, para novas perspectivas na busca de uma terapêutica mais efetiva.