930 resultados para Pattern classification
Resumo:
In the current Information Age, data production and processing demands are ever increasing. This has motivated the appearance of large-scale distributed information. This phenomenon also applies to Pattern Recognition so that classic and common algorithms, such as the k-Nearest Neighbour, are unable to be used. To improve the efficiency of this classifier, Prototype Selection (PS) strategies can be used. Nevertheless, current PS algorithms were not designed to deal with distributed data, and their performance is therefore unknown under these conditions. This work is devoted to carrying out an experimental study on a simulated framework in which PS strategies can be compared under classical conditions as well as those expected in distributed scenarios. Our results report a general behaviour that is degraded as conditions approach to more realistic scenarios. However, our experiments also show that some methods are able to achieve a fairly similar performance to that of the non-distributed scenario. Thus, although there is a clear need for developing specific PS methodologies and algorithms for tackling these situations, those that reported a higher robustness against such conditions may be good candidates from which to start.
Resumo:
Mode of access: Internet.
Resumo:
The expectation-maximization (EM) algorithm has been of considerable interest in recent years as the basis for various algorithms in application areas of neural networks such as pattern recognition. However, there exists some misconceptions concerning its application to neural networks. In this paper, we clarify these misconceptions and consider how the EM algorithm can be adopted to train multilayer perceptron (MLP) and mixture of experts (ME) networks in applications to multiclass classification. We identify some situations where the application of the EM algorithm to train MLP networks may be of limited value and discuss some ways of handling the difficulties. For ME networks, it is reported in the literature that networks trained by the EM algorithm using iteratively reweighted least squares (IRLS) algorithm in the inner loop of the M-step, often performed poorly in multiclass classification. However, we found that the convergence of the IRLS algorithm is stable and that the log likelihood is monotonic increasing when a learning rate smaller than one is adopted. Also, we propose the use of an expectation-conditional maximization (ECM) algorithm to train ME networks. Its performance is demonstrated to be superior to the IRLS algorithm on some simulated and real data sets.
Resumo:
We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c=1,...,m. For a two-class problem, the probability of class one given x is estimated by s(y(x)), where s(y)=1/(1+e-y). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multiclass problems (m>2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
This paper describes an innovative sensing approach allowing capture, discrimination, and classification of transients automatically in gait. A walking platform is described, which offers an alternative design to that of standard force plates with advantages that include mechanical simplicity and less restriction on dimensions. The scope of the work is to investigate as an experiment the sensitivity of the distributive tactile sensing method with the potential to address flexibility on gait assessment, including patient targeting and the extension to a variety of ambulatory applications. Using infrared sensors to measure plate deflection, gait patterns are compared with stored templates using a pattern recognition algorithm. This information is input into a neural network to classify normal and affected walking events, with a classification accuracy of just under 90 per cent achieved. The system developed has potential applications in gait analysis and rehabilitation, whereby it can be used as a tool for early diagnosis of walking disorders or to determine changes between pre- and post-operative gait.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
User queries over image collections, based on semantic similarity, can be processed in several ways. In this paper, we propose to reuse the rules produced by rule-based classifiers in their recognition models as query pattern definitions for searching image collections.
Biogeochemical Classification of South Florida’s Estuarine and Coastal Waters of Tropical Seagrasses
Resumo:
South Florida’s watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida’s estuarine and coastal waters is important to Everglades’ restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida’s coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria.
Resumo:
Calcitic belemnite rostra are usually employed to perform paleoenvironmental studies based on geochemical data. However, several questions, such as their original porosity and microstructure, remain open, despite they are essential to make accurate interpretations based on geochemical analyses.This paper revisits and enlightens some of these questions. Petrographic data demonstrate that calcite crystals of the rostrum solidum of belemnites grow from spherulites that successively develop along the apical line, resulting in a “regular spherulithic prismatic” microstructure. Radially arranged calcite crystals emerge and diverge from the spherulites: towards the apex, crystals grow until a new spherulite is formed; towards the external walls of the rostrum, the crystals become progressively bigger and prismatic. Adjacent crystals slightly vary in their c-axis orientation, resulting in undulose extinction. Concentric growth layering develops at different scales and is superimposed and traversed by a radial pattern, which results in the micro-fibrous texture that is observed in the calcite crystals in the rostra.Petrographic data demonstrate that single calcite crystals in the rostra have a composite nature, which strongly suggests that the belemnite rostra were originally porous. Single crystals consistently comprise two distinct zones or sectors in optical continuity: 1) the inner zone is fluorescent, has relatively low optical relief under transmitted light (TL) microscopy, a dark-grey color under backscatter electron microscopy (BSEM), a commonly triangular shape, a “patchy” appearance and relatively high Mg and Na contents; 2) the outer sector is non-fluorescent, has relatively high optical relief under TL, a light-grey color under BSEM and low Mg and Na contents. The inner and fluorescent sectors are interpreted to have formed first as a product of biologically controlled mineralization during belemnite skeletal growth and the non-fluorescent outer sectors as overgrowths of the former, filling the intra- and inter-crystalline porosity. This question has important implications for making paleoenvironmental and/or paleoclimatic interpretations based on geochemical analyses of belemnite rostra.Finally, the petrographic features of composite calcite crystals in the rostra also suggest the non-classical crystallization of belemnite rostra, as previously suggested by other authors.
Resumo:
During the period from 2011 - 2015 with the aim of this study was to systematically review and in particular the revised classification of the Persian Gulf (and the Strait of Hormuz) and to obtain new information about the final confirmed list of fish species of Iranian waters of the Persian Gulf (and Hormuz Strait), samples of museums, surveys and sampling, and comparative study of all available sources and documentation was done. Classification systematic of sharks and batoids and bony fishes. Based on the results, the final list of approved fish of the Persian Gulf (including the Strait of Hormuz and Gulf of Oman border region) are 907 species in 157 families, of which 93 species of fish with 28 cartilaginous families (including 18 families with 60 species and 10 families with 34 species of shark and batoids); and 129 families with 814 species of bony fishes are. The presence of 11 new family with only one representative species in the area include Veliferidae, Zeidae, Sebastidae, Stomiidae, Dalatiidae, Zanclidae, Pempheridae, Lophiidae Kuhliidae, Etmoptridae and Chlorophthalmidae also recently introduced and approved. The two families based Creediidae Clinidae and their larvae samples for newly identified area. 62 families with mono-species and 25 families with more than 10 species are present including Gobiidae (53), Carangide (48), Labride (41), Blenniidae (34), Apogonidae (32) and Lutjanidae (31) of bony fishes, Carcharhinidae (26) of sharks and Dasyatidae (12) in terms of number of species of batoids most families to have their data partitioning. Also, 13 species as well as endemic species introduced the Persian Gulf and have been approved in terms of geographical expansion of the Persian Gulf are unique to the area.Two species of the family Poeciliidae and Cyprinodontidae have species of fresh water to the brackish coastal habitats have found a way;in addition to 11 types of families Carcharhinidae, Clupeidae, Chanidae, Gobidae, Mugilidae, Sparidae also as a species, with a focus on freshwater river basins in the south of the country have been found. In this study, it was found that out of 907 species have been reported from the study area, 294 species (32.4 %) to benthic habitats (Benthic habitats) and 613 species (67.6 %) in pelagic habitats (Pelagic habitats) belong. Coral reefs and rocky habitats in the range of benthic fish (129 species - 14.3 %) and reef associated fishes in the range of pelagic fishes (432 species – 47.8 %), the highest number and percentage of habitat diversity (Species habitats) have been allocated. As well as fish habitats with sea grass and algae beds in benthic habitat (17 species- 1.9 %) and pelagic - Oceanic (Open sea) in the whole pelagic fish (30 species – 3.3 %), the lowest number and percentage of habitat diversity into account. From the perspective of animal geography (Zoogeography) and habitat overlaps and similarities (Habitat overlapping) fish fauna of the Persian Gulf compared with other similar seas (tropical and subtropical, and warm temperate) in the Indian Ocean area - calm on the surface, based on the presence of certain species that the fish fauna of the Persian Gulf to the Red Sea and the Bay of Bengal (East Arabian Sea) compared to other regions in the Indian Ocean (Pacific) is closer (about 50%), and the Mediterranean (East area) and The Hawaiian Islands have the lowest overlap and similarity of habitat and species (about 10%).