981 resultados para Particle Filter
Resumo:
Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.
Resumo:
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.
Resumo:
Bag sampling techniques can be used to temporarily store an aerosol and therefore provide sufficient time to utilize sensitive but slow instrumental techniques for recording detailed particle size distributions. Laboratory based assessment of the method were conducted to examine size dependant deposition loss coefficients for aerosols held in VelostatTM bags conforming to a horizontal cylindrical geometry. Deposition losses of NaCl particles in the range of 10 nm to 160 nm were analysed in relation to the bag size, storage time, and sampling flow rate. Results of this study suggest that the bag sampling method is most useful for moderately short sampling periods of about 5 minutes.
Resumo:
Exposure to particles emitted by cooking activities may be responsible for a variety of respiratory health effects. However, the relationship between these exposures and their subsequent effects on health cannot be evaluated without understanding the properties of the emitted aerosol or the main parameters that influence particle emissions during cooking. Whilst traffic-related emissions, stack emissions and ultrafine particle concentrations (UFP, diameter < 100 nm) in urban ambient air have been widely investigated for many years, indoor exposure to UFPs is a relatively new field and in order to evaluate indoor UFP emissions accurately, it is vital to improve scientific understanding of the main parameters that influence particle number, surface area and mass emissions. The main purpose of this study was to characterise the particle emissions produced during grilling and frying as a function of the food, source, cooking temperature and type of oil. Emission factors, along with particle number concentrations and size distributions were determined in the size range 0.006-20 m using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). An infrared camera was used to measure the temperature field. Overall, increased emission factors were observed to be a function of increased cooking temperatures. Cooking fatty foods also produced higher particle emission factors than vegetables, mainly in terms of mass concentration, and particle emission factors also varied significantly according to the type of oil used.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.
Resumo:
Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.
Resumo:
This paper proposes the validity of a Gabor filter bank for feature extraction of solder joint images on Printed Circuit Boards (PCBs). A distance measure based on the Mahalanobis Cosine metric is also presented for classification of five different types of solder joints. From the experimental results, this methodology achieved high accuracy and a well generalised performance. This can be an effective method to reduce cost and improve quality in the production of PCBs in the manufacturing industry.
Resumo:
Surveillance systems such as object tracking and abandoned object detection systems typically rely on a single modality of colour video for their input. These systems work well in controlled conditions but often fail when low lighting, shadowing, smoke, dust or unstable backgrounds are present, or when the objects of interest are a similar colour to the background. Thermal images are not affected by lighting changes or shadowing, and are not overtly affected by smoke, dust or unstable backgrounds. However, thermal images lack colour information which makes distinguishing between different people or objects of interest within the same scene difficult. ----- By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using either modality individually. We evaluate four approaches for fusing visual and thermal images for use in a person tracking system (two early fusion methods, one mid fusion and one late fusion method), in order to determine the most appropriate method for fusing multiple modalities. We also evaluate two of these approaches for use in abandoned object detection, and propose an abandoned object detection routine that utilises multiple modalities. To aid in the tracking and fusion of the modalities we propose a modified condensation filter that can dynamically change the particle count and features used according to the needs of the system. ----- We compare tracking and abandoned object detection performance for the proposed fusion schemes and the visual and thermal domains on their own. Testing is conducted using the OTCBVS database to evaluate object tracking, and data captured in-house to evaluate the abandoned object detection. Our results show that significant improvement can be achieved, and that a middle fusion scheme is most effective.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
When the supply voltages are balanced and sinusoidal, load compensation can give both unity power factor (UPF) and perfect harmonic cancellation (PHC) source currents. But under distorted supply voltages, achieving both UPF and PHC currents are not possible and contradictory to each other. Hence there should be an optimal performance between these two important compensation goals. This paper presents an optimal control algorithm for load compensation under unbalanced and distorted supply voltages. In this algorithm source currents are compensated for reactive, imbalance components and harmonic distortions set by the limits. By satisfying the harmonic distortion limits and power balance, this algorithm gives the source currents which will provide the maximum achievable power factor. The detailed simulation results using MATLAB are presented to support the performance of the proposed optimal control algorithm.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.