992 resultados para Particle Classification
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
Purpose: To describe and compare the content of instruments that assess environmental factors using the International Classification of Functioning, Disability and Health (ICF). Methods: A systematic search of PubMed, CINAHL and PEDro databases was conducted using a pre-determined search strategy. The identified instruments were screened independently by two investigators, and meaningful concepts were linked to the most precise ICF category according to published linking rules. Results: Six instruments were included, containing 526 meaningful concepts. Instruments had between 20% and 98% of items linked to categories in Chapter 1. The highest percentage of items from one instrument linked to categories in Chapters 2–5 varied between 9% and 50%. The presence or absence of environmental factors in a specific context is assessed in 3 instruments, while the other 3 assess the intensity of the impact of environmental factors. Discussion: Instruments differ in their content, type of assessment, and have several items linked to the same ICF category. Most instruments primarily assess products and technology (Chapter 1), highlighting the need to deepen the discussion on the theory that supports the measurement of environmental factors. This discussion should be thorough and lead to the development of methodologies and new tools that capture the underlying concepts of the ICF.
Resumo:
OBJECTIVE: To develop a Charlson-like comorbidity index based on clinical conditions and weights of the original Charlson comorbidity index. METHODS: Clinical conditions and weights were adapted from the International Classification of Diseases, 10th revision and applied to a single hospital admission diagnosis. The study included 3,733 patients over 18 years of age who were admitted to a public general hospital in the city of Rio de Janeiro, southeast Brazil, between Jan 2001 and Jan 2003. The index distribution was analyzed by gender, type of admission, blood transfusion, intensive care unit admission, age and length of hospital stay. Two logistic regression models were developed to predict in-hospital mortality including: a) the aforementioned variables and the risk-adjustment index (full model); and b) the risk-adjustment index and patient's age (reduced model). RESULTS: Of all patients analyzed, 22.3% had risk scores >1, and their mortality rate was 4.5% (66.0% of them had scores >1). Except for gender and type of admission, all variables were retained in the logistic regression. The models including the developed risk index had an area under the receiver operating characteristic curve of 0.86 (full model), and 0.76 (reduced model). Each unit increase in the risk score was associated with nearly 50% increase in the odds of in-hospital death. CONCLUSIONS: The risk index developed was able to effectively discriminate the odds of in-hospital death which can be useful when limited information is available from hospital databases.
Resumo:
To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization-sensitive laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 degrees and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low-frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log-normal particle size distribution. (C) 1996 American Institute of Physics.
Resumo:
Social concerns for environmental impact on air, water and soil pollution have grown along with the accelerated growth of pig production. This study intends to characterize air contamination caused by fungi and particles in swine production, and, additionally, to conclude about their eventual environmental impact. Fiftysix air samples of 50 litters were collected through impaction method. Air sampling and particle matter concentration were performed in indoor and also outdoor premises. Simultaneously, temperature and relative humidity were monitored according to the International Standard ISO 7726 – 1998. Aspergillus versicolor presents the highest indoor spore counts (>2000 CFU/m3) and the highest overall prevalence (40.5%), followed by Scopulariopsis brevicaulis (17.0%) and Penicillium sp. (14.1%). All the swine farms showed indoor fungal species different from the ones identified outdoors and the most frequent genera were also different from the ones indoors. The distribution of particle size showed the same tendency in all swine farms (higher concentration values in PM5 and PM10 sizes). Through the ratio between the indoor and outdoor values, it was possible to conclude that CFU/m3 and particles presented an eventual impact in outdoor measurements.
Resumo:
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
This paper studies a discrete dynamical system of interacting particles that evolve by interacting among them. The computational model is an abstraction of the natural world, and real systems can range from the huge cosmological scale down to the scale of biological cell, or even molecules. Different conditions for the system evolution are tested. The emerging patterns are analysed by means of fractal dimension and entropy measures. It is observed that the population of particles evolves towards geometrical objects with a fractal nature. Moreover, the time signature of the entropy can be interpreted at the light of complex dynamical systems.
Resumo:
This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.