985 resultados para Partial oxalate method
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
In this Master’s Thesis a new Distributed Award Protocol (DAP) for robot communication and cooperation is presented. Task assignment (contract awarding) is done dynamically with contracts assigned to robots based upon the best bid received. Instead of having a manager and a contractor it is proposed a fully distributed bidding/awarding mechanism without a distinguished master. The best bidding robots are awarded with contract for execution. The contractors make decisions locally. This brings the following benefits: no communication bottleneck, low computational power requirement, increased robustness. DAP can handle multitasking. Tasks can be injected into system during the execution of already allocated tasks. As tasks have priorities, in the next cycle after taking into account actual bid parameters of all robots, tasks can be re-allocated. The aim is to minimize a global cost function which is a compromise between cost of task execution and cost of resources usage. Information about tasks and bid values is spread among robots with the use of a Round Robin Route, which is a novel solution proposed in this work. This method allows also identifying failed robots. Such failed robot is eliminated from the list of awarded robots and its replacement is found so the task is still executed by a team. If the failure of a robot was temporary (e.g. communication noise) and the robot can recover, it can again participate in the next bidding/awarding process. Using a bidding/awarding mechanism allows robots to dynamically relocate among tasks. This is also contributes to system robustness. DAP was evaluated through multiple experiments done in the multi-robot simulation system. Various scenarios were tested to check the idea of the main algorithm. Different failures of robots (communication failures, partial hardware malfunctions) were simulated and observations were made regarding how DAP recovers from them. Also the DAP flexibility to environment changes was watched. The experiments in the simulated environment confirmed the above features of DAP.
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
On-line partial discharge (PD) measurements have become a common technique for assessing the insulation condition of installed high voltage (HV) insulated cables. When on-line tests are performed in noisy environments, or when more than one source of pulse-shaped signals are present in a cable system, it is difficult to perform accurate diagnoses. In these cases, an adequate selection of the non-conventional measuring technique and the implementation of effective signal processing tools are essential for a correct evaluation of the insulation degradation. Once a specific noise rejection filter is applied, many signals can be identified as potential PD pulses, therefore, a classification tool to discriminate the PD sources involved is required. This paper proposes an efficient method for the classification of PD signals and pulse-type noise interferences measured in power cables with HFCT sensors. By using a signal feature generation algorithm, representative parameters associated to the waveform of each pulse acquired are calculated so that they can be separated in different clusters. The efficiency of the clustering technique proposed is demonstrated through an example with three different PD sources and several pulse-shaped interferences measured simultaneously in a cable system with a high frequency current transformer (HFCT).
Resumo:
A fast marching level set method is presented for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential equation for a propagating level set function and use techniques borrowed from hyperbolic conservation laws. Topological changes, corner and cusp development, and accurate determination of geometric properties such as curvature and normal direction are naturally obtained in this setting. This paper describes a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for Hamilton-Jacobi equations, and fast adaptive narrow band level set methods. The technique is applicable to a variety of problems, including shape-from-shading problems, lithographic development calculations in microchip manufacturing, and arrival time problems in control theory.
Resumo:
The objectives of this research dissertation were to develop and present novel analytical methods for the quantification of surface binding interactions between aqueous nanoparticles and water-soluble organic solutes. Quantification of nanoparticle surface interactions are presented in this work as association constants where the solutes have interacted with the surface of the nanoparticles. By understanding these nanoparticle-solute interactions, in part through association constants, the scientific community will better understand how organic drugs and nanomaterials interact in the environment, as well as to understand their eventual environmental fate. The biological community, pharmaceutical, and consumer product industries also have vested interests in nanoparticle-drug interactions for nanoparticle toxicity research and in using nanomaterials as drug delivery vesicles. The presented novel analytical methods, applied to nanoparticle surface association chemistry, may prove to be useful in assisting the scientific community to understand the risks, benefits, and opportunities of nanoparticles. The development of the analytical methods presented uses a model nanoparticle, Laponite-RD (LRD). LRD was the proposed nanoparticle used to model the system and technique because of its size, 25 nm in diameter. The solutes selected to model for these studies were chosen because they are also environmentally important. Caffeine, oxytetracycline (OTC), and quinine were selected to use as models because of their environmental importance and chemical properties that can be exploited in the system. All of these chemicals are found in the environment; thus, how they interact with nanoparticles and are transported through the environment is important. The analytical methods developed utilize and a wide-bore hydrodynamic chromatography to induce a partial hydrodynamic separation between nanoparticles and dissolved solutes. Then, using deconvolution techniques, two separate elution profiles for the nanoparticle and organic solute can be obtained. Followed by a mass balance approach, association constants between LRD, our model nanoparticle, and organic solutes are calculated. These findings are the first of their kind for LRD and nanoclays in dilute dispersions.
Resumo:
The mechanical behaviour of transventilated façades performed by natural stone is necessarily based on the correct execution of both anchoring elements on the stone cladding as in the ones corresponding to the enclosure support, either with brick masonry walls or reinforced concrete walls. In the case studied in the present work, the origin of the damages suffered on the façade of a building located in Alcoy has been analyzed, where the detachment of part of the outer enclosure occurred. This enclosure is a transventilated façade formed by Bateig Blue stone tiles. To this end, “in situ” tests of the anchoring systems employed have been performed, as well as laboratory tests of mechanical characterization of the material and of different types of anchor, comparing these results with those obtained in both the simplified analytical models of continuum mechanics as developed by the Finite Element Method (FEM).
Resumo:
Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.
Resumo:
Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.
Resumo:
Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.
Resumo:
Mode of access: Internet.
Resumo:
"Supported in part by the Department of Energy under contract ENERGY/EY-76-S-02-2383, and submitted in partial fulfillment of the requirements of the Graduate College for the degree of doctor of philosophy."