938 resultados para Parthenogenesis in plants
Resumo:
"First report"--T.p.
Resumo:
Mode of access: Internet.
Resumo:
"Sonderabdruck aus 'Die natur' ... 37. jahrg. 1888. nr. 1-7."
Resumo:
Mode of access: Internet.
Resumo:
Patterns of geographic parthenogenesis can provide insight into the ecological implications of the transition from sexual to parthenogenetic reproduction. We analysed quantitatively the environmental niches occupied by sexual and parthenogenetic geckos of the Heteronotia binoei complex in the Australian and zone. This complex consists of two independently derived maternal lineages of hybrid parthenogens, which, in turn, include two different triploid races that resulted from reciprocal backcrossing with the parental sexual taxa. The sexual progenitors are still extant and occupy very distinct environmental niches. The triploid parthenogenetic races are biased in their environmental niche towards those of the sexual races for which their genomes are biased and this dosage effect is apparent in both maternal lineages. Thus triploidy may have benefited the parthenogens through partial recovery of the parental niches. Although the parthenogens have a broader geographic distribution than their sexual progenitors, their environmental niche is narrower and biased towards one of the sexual races. In keeping with general patterns of geographic parthenogenesis. parthenogenetic H. binoei occupy a harsher environment than the sexual forms. occurring in regions of persistently low rainfall. Bioclimatic modelling suggests patterns of rainfall are important in limiting the distribution of sexual and parthenogenetic taxa. and extrapolation from the current bioclimatic profiles indicates potential for further eastward range expansion by the parthenogens.
Resumo:
The Australian and zone harbours a surprising number of parthenogenetic organisms. including the well known case of the grasshopper Warramaba virgo. Less well known is the case of the stick insects of the Sipyloidea complex, which. despite its presence in the literature for over 15 years. has gone entirely unnoticed by workers in the field. We draw attention to the remarkable similarities between the evolution of parthenogenesis in Warramaba and Sipyloidea and analyse the geographic distributions of parthenogenetic and sexual forms with respect to six Climatic variables. We provide evidence that a combination of Climatic and vegetative barriers are responsible for the current distribution patterns in these taxa. Comparisons are also made with patterns of geographic parthenogenesis in lizards of the Heteronotia binoei complex. In general. there has been a strong tendency for parthenogenesis to originate via hybridization in the western part of the and zone with subsequent eastward spread throughout mulga woodlands and mallee shrublands where rainfall is both low and aseasonal. We propose that the hybridization events leading to parthenogenesis in these diverse taxa were driven by a common biogeographic process - that is, by range shifts associated with changes in aridity during the late Pleistocene.
Resumo:
Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.
Resumo:
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to detect petroleum-derived spray oils (PDSOs) in citrus seedlings and trees. The NMR spectrum of the phantom containing 10% (v/v) of a nC24 agricultural mineral oil (AMO) showed the resonance of the water protons at delta = 5 ppm, while the resonance of the oil protons at delta = 1.3 to 1.7 ppm. The peak resolution and the chemical shift difference of more than 3.3 ppm between water and oil protons effectively differentiated water and the oil. Chemical shift selective imaging (CSSI) was performed to localize the AMO within the stems of Citrus trifoliata L. seedlings after the application of a 4% (v/v) spray. The chemical shift selective images of the oil were acquired by excitation at delta = 1.5 ppm by averaging over 400 transients in each phase-encoding step. Oil was mainly detected in the outer cortex of stems within 10 d of spray application; some oil was also observed in the inner vascular bundle and pith of the stems at this point. CSSI was also applied to investigate the persistence of oil deposits in sprayed mature Washington navel orange (Citrus x aurantium L.) trees in an orchard. The trees were treated with either fourteen 0.25%, fourteen 0.5%, four 1.75%, or single 7% sprays of a nC23 horticultural mineral oil (HMO) 12 to 16 months before examination of plant tissues by CSSI, and were still showing symptoms of chronic phytotoxicity largely manifested as reduced yield. The oil deposits were detected in stems of sprayed flushes and unsprayed flushes produced 4 to 5 months after the last spray was applied, suggesting a potential movement of the oil via phloem and a correlation of the persistence of oil deposit in plants and the phytotoxicity. The results demonstrate that MRI is an effective method to probe the uptake and localization of PDSOs and other xenobiotics in vivo in plants noninvasively and nondestructively.
Resumo:
RNA interference (RNAi) is widely used to silence genes in plants and animals. it operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.
Resumo:
The bile pigment bilirubin-IXα is the degradative product of heme, distributed among mammals and some other vertebrates. It can be recognized as the pigment responsible for the yellow color of jaundice and healing bruises. In this paper we present the first example of the isolation of bilirubin in plants. The compound was isolated from the brilliant orange-colored arils of Strelitzia nicolai, the white bird of paradise tree, and characterized by HPLC−ESMS, UV−visible, 1H NMR, and 13C NMR spectroscopy, as well as comparison with an authentic standard. This discovery indicates that plant cyclic tetrapyrroles may undergo degradation by a previously unknown pathway. Preliminary analyses of related plants, including S. reginae, the bird of paradise, also revealed bilirubin in the arils and flowers, indicating that the occurrence of bilirubin is not limited to a single species or tissue type.
Resumo:
Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane d13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the d13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary d13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4 per mil to -26.5 per mil) were generally within the range of d13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the d13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using d13C values from both C3 and C4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the fC3 values as the minimum and maximum d13C values are approached, and a hyperbolic function that takes into account the differences between C3 and C4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed d13C values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert d13C measurements on sedimentary n-alkanes directly into reconstructions of C3 vegetation cover.