954 resultados para Paraventricular nucleus of the hypothalamus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously identified a novel nuclear RNA species derived from the preproenkephalin (PPE) gene. This transcript, which we have named PPEIA-3′ RNA, hybridizes with probes directed at a region of PPE intron A downstream of an alternative germ-cell transcription start site, but does not contain PPE protein coding sequences. We now report that estrogen treatment of ovariectomized rats increases the expression of conventional PPE heteronuclear RNA, and also induces the expression of PPEIA-3′ RNA, apparently in separate cell populations within the ventromedial nucleus of the hypothalamus. Further, we show that cells expressing PPEIA-3′ are found in several neuronal groups in the rat forebrain and brainstem, with a distinct topographical distribution. High densities of PPEIA-3′ containing cells are found in the reticular thalamic nucleus, the basal forebrain, the vestibular complex, the deep cerebellar nuclei, and the trapezoid body, a pattern that parallels the distribution of atypical nuclear RNAs described by other groups. These results suggest that this diverse neuronal population shares a common set of nuclear factors responsible for the expression and retention of this atypical RNA transcript. The implication of these results for cell-specific gene transcription and regulation in the brain and the possible relationship of PPEIA-3′ RNA and other atypical nuclear RNAs is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington disease stems from a mutation of the protein huntingtin and is characterized by selective loss of discrete neuronal populations in the brain. Despite a massive loss of neurons in the corpus striatum, NO-generating neurons are intact. We recently identified a brain-specific protein that associates with huntingtin and is designated huntingtin-associated protein (HAP1). We now describe selective neuronal localizations of HAP1. In situ hybridization studies reveal a resemblance of HAP1 and neuronal nitric oxide synthase (nNOS) mRNA localizations with dramatic enrichment of both in the pedunculopontine nuclei, the accessory olfactory bulb, and the supraoptic nucleus of the hypothalamus. Both nNOS and HAP1 are enriched in subcellular fractions containing synaptic vesicles. Immunocytochemical studies indicate colocalizations of HAP1 and nNOS in some neurons. The possible relationship of HAP1 and nNOS in the brain is reminiscent of the relationship of dystrophin and nNOS in skeletal muscle and suggests a role of NO in Huntington disease, analogous to its postulated role in Duchenne muscular dystrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restricted cochlear lesions in adult animals result in plastic changes in the representation of the lesioned cochlea, and thus in the frequency map, in the contralateral auditory cortex and thalamus. To examine the contribution of subthalamic changes to this reorganization, the effects of unilateral mechanical cochlear lesions on the frequency organization of the central nucleus of the inferior colliculus (ICC) were examined in adult cats. Lesions typically resulted in a broad high-frequency hearing loss extending from a frequency in the range 15-22 kHz. After recovery periods of 2.5-18 months, the frequency organization of ICC contralateral to the lesioned cochlea was determined separately for the onset and late components of multiunit responses to tone-burst stimuli. For the late response component in all but one penetration through the ICC, and for the onset response component in more than half of the penetrations, changes in frequency organization in the lesion projection zone were explicable as the residue of prelesion responses. In half of the penetrations exhibiting nonresidue type changes in onset-response frequency organization, the changes appeared to reflect the unmasking of normally inhibited inputs. In the other half it was unclear whether the changes reflected unmasking or a dynamic process of reorganization. Thus, most of the observed changes were explicable as passive consequences of the lesion, and there was limited evidence for plasticity in the ICC. The implications of the data with respect to the primary locus of the changes and to the manner in which they contribute to thalamocortical reorganization are considered. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical or chemical stimulation of the inferior colliculus (IC) induces fear-like behaviors. More recently, consistent evidence has shown that electrical stimulation of the central nucleus of the IC supports Pavlovian conditioning and latent inhibition (Li). LI is characterized by retardation in conditioning and also by an impaired ability to ignore irrelevant stimuli, after a non-reinforced pre-exposure to the conditioned stimulus. LI has been proposed as a behavioral model of cognitive abnormalities seen in schizophrenia. The aim of the present study was to determine whether dopaminergic mechanisms in the IC are involved in LI of the conditioned emotional response (CER). To induce LI, a group of rats was pre-exposed (PE) to six tones in two sessions, while rats that were not pre-exposed (NPE) had two sessions without tone presentations. The conditioning consisted of two tone presentations to the animal, followed immediately by a foot shock. PE and NPE rats received IC microinjections of physiological saline, the dopaminergic agonist apomorphine (9.0 mu g/0.5 mu L/side), or the dopaminergic antagonist haloperidol (0.5 mu g/0.5 mu L/side) before both pre-exposure and conditioning. During the test, the PE rats that received saline or haloperidol had a lower suppression of the licking response compared to NPE rats that received vehicle or haloperidol, indicating that latent inhibition was induced. There was no significant difference in the suppression ratio in rats that received apomorphine injections into the IC, indicating reduced latent inhibition. These results suggest that dopamine-mediated mechanisms of the IC are involved in the development of LI. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To study the microanatomy of the brainstem related to the different safe entry zones used to approach intrinsic brainstem lesions. METHODS: Ten formalin-fixed and frozen brainstem specimens (20 sides) were analyzed. The white fiber dissection technique was used to study the intrinsic microsurgical anatomy as related to safe entry zones on the brainstem surface. Three anatomic landmarks on the anterolateral brainstem surface were selected: lateral mesencephalic sulcus, peritrigeminal area, and olivary body. Ten other specimens were used to study the axial sections of the inferior olivary nucleus. The clinical application of these anatomic nuances is presented. RESULTS: The lateral mesencephalic sulcus has a length of 7.4 to 13.3 mm (mean, 9.6 mm) and can be dissected safely in depths up to 4.9 to 11.7 mm (mean, 8.02 mm). In the peritrigeminal area, the distance of the fifth cranial nerve to the pyramidal tract is 3.1 to 5.7 mm (mean, 4.64 mm). The dissection may be performed 9.5 to 13.1 mm (mean, 11.2 mm) deeper, to the nucleus of the fifth cranial nerve. The inferior olivary nucleus provides safe access to lesions located up to 4.7 to 6.9 mm (mean, 5.52 mm) in the anterolateral aspect of the medulla. Clinical results confirm that these entry zones constitute surgical routes through which the brainstem may be safely approached. CONCLUSION: The white fiber dissection technique is a valuable tool for understanding the three-dimensional disposition of the anatomic structures. The lateral mesencephalic sulcus, the peritrigeminal area, and the inferior olivary nucleus provide surgical spaces and delineate the relatively safe alleys where the brainstem can be approached without injuring important neural structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Systemic administration of cannabidiol (CBD), a non-psychotomimetic component of Cannabis sativa, is able to attenuate cardiovascular and behavioral (freezing) changes induced by re-exposure to a context that had been previously paired with footshocks. The brain sites mediating this effect, however, remain unknown. The medial prefrontal cortex (mPFC) has been related to contextual fear conditioning. Objectives: (1) To verify, using c-Fos immunocytochemistry, if the mPFC is involved in the attenuation of contextual fear induced by systemic administration of CBD; (2) to investigate if direct microinjections of CBD into mPFC regions would also attenuate contextual fear. Results: Confirming previous results systemic administration of CBD (10 mg/kg) decreased contextual fear and associated c-Fos expression in the prefrontal cortex (prelimbic and infralimbic regions). The drug also attenuated c-Fos expression in the bed nucleus of the stria terminalis (BNST). Direct CBD (30 nmol) microinjection into the PL prefrontal cortex reduced freezing induced by re-exposure to the aversively conditioned context. In the infralimbic (IL) prefrontal cortex, however, CBD (30 nmol) produced an opposite result, increasing the expression of contextual fear conditioning. This result was confirmed by an additional experiment where the conditioning session was performed under a less aversive protocol. Conclusion: These results suggest that the PL prefrontal cortex may be involved in the attenuation of contextual fear induced by systemic injection of CBD. They also support the proposition that the IL and PL play opposite roles in fear conditioning. A possible involvement of the BNST in CBD effects needs to be further investigated. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrastructure is described of the meronts, microgamonts and young oocyst stages of Isospora hemidactyli of the gecko Hemidactylus mabouia from Belém, PA, north Brazil. The endogenous stages all develop in the nucleus of the gut epithelial cells. The nucleus remains intact up to the latest stages of the parasite's development, but degenerates by the time the oocyst appears. Merogonic division appears to be asynchronous, and some of the differentiated merozoites contained more than one nucleus. Microgamonts conform in structure with those of other eimeriids. Some of the type 2 wall-forming bodies disintegrate into smaller globules and ground substance of lower density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steroid receptors are nuclear proteins that regulate gene transcription in a ligand-dependent manner. Over-expression of the Xenopus estrogen receptor in a vaccinia virus-derived expression system revealed that the receptor localized exclusively in the nucleus of the infected cells, irrespective of the presence or absence of the ligand. Furthermore, two forms of the receptor were produced, a full-length and a N-terminal truncated version, which are translated from a single mRNA species by the use of two AUG within the same reading frame. These 66- and 61-kDa receptors were also observed after in vitro translation of the mRNA as well as in primary Xenopus hepatocytes. Both forms are potent estrogen-dependent transcriptional activators in transient transfection experiments, as well as in in vitro transcription assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé : L'amygdale latérale (AL) joue un .rôle essentiel dans la plasticité synaptique à la base du conditionnement de la peur. Malgré le faite que la majorité des cellules de l'AL reçoivent les afférentes nécessaires, une potentialisation dans seulement une partie d'entre elles est obligatoire afin que l'apprentissage de la peur ait lieu. Il a été montré que ces cellules expriment la forme active de CREB, et celui-ci a été associé aux cellules dites de type 'nonaccomrnodating' (nAC). Très récemment, une étude a impliqué les circuits récurrents de l'AL dans le conditionnement de la peur. Un lien entre ces deux observations n'a toutefois jamais été établi. t Nous avons utilisé un protocole in vitro de forte activation de l'AL, résultant dans l'induction de 'bursts' provenant de l'hippocampe et se propageant jusqu'à l'AL. Dans l'AL ces 'bursts' atteignent toutes les cellules et se propagent à travers plusieurs chemins. Utilisant ce protocole, nous avons, pour la première fois pu associer dans l'AL, des cellules connectées de manière récurrente avec des cellules de type nAC. Aussi bien dans ces dernières que dans les cellules de type 'accommodating' (AC), une diminution dans la transmission inhibitrice, à la fois exprimée de manière pré synaptique mais également indépendant de la synthèse de protéine a pu être observé. Au contraire, une potentialisation induite et exprimée au niveau pré synaptique ainsi que dépendante de la synthèse de protéine a pu être trouvé uniquement dans les cellules de type nAC. De plus, une hyperexcitabilité, dépendante des récepteurs NMDA a pu être observé, avec une sélection préférentielle des cellules du type nAC dans la génération de bursts. Nous avons également pu démontrer que la transformation d'un certain nombre de cellules de type AC en cellules dites nAC accompagnait cette augmentation générale de l'excitabilité de l'AL. Du faite da la grande quantité d'indices suggérant une connexion entre le système noradrénergique et les états de peur/d'anxiété, les effets d'une forte activation de l'AL sur ce dernier ont été investigués et ont révélés une perte de sa capacité de modulation du 'spiking pattern'. Finalement, des changements au niveau de l'expression d'un certain nombre de gènes, incluant celui codant pour le BDNF, a pu être trouvé à la suite d'une forte activation de l'AL. En raison du lien récemment décrit entre l'expression de la forme active de CREB et des cellules de type nAC ainsi que celui de l'implication des cellules de l'AL connectés de manière récurrente dans l'apprentissage de la peur, nos résultats nous permettent de suggérer un modèle expliquant comment la potentialisation des connections récurrentes entre cellules de type nAC pourrait être à la base de leur recrutement sélectif pendant le conditionnement de la peur. De plus, ils peuvent offrir des indices par rapport aux mécanismes à travers lesquels une sous population de neurones peut être réactivée par une stimulation externe précédemment inefficace, et induire ainsi un signal suffisamment fort pour qu'il soit transmit aux structures efférentes de l'AL. Abstract : The lateral nucleus of the amygdala (LA) is critically involved in the plasticity underlying fear-conditioned learning (Sah et al., 2008). Even though the majority of cells in the LA receive the necessary sensory inputs, potentiation in only a subset is required for fear learning to occur (Repa et al., 2001; Rumpel et al., 2005). These cells express active CREB (CAMP-responsive element-binding protein) (Han et al., 200, and this was related to the non-accommodating (nAC) spiking phenotype (Viosca et al., 2009; Zhou et al., 2009). In addition, a very recent study implicated recurrently connected cells of the LA in fear conditioned learning (Johnson et al., 2008). A link between the two observations has however never been made. In rats, we used an in vitro protocol of strong activation of the LA, resulting in bursting activity, which spread from the hippocampus to the LA. Within the LA, this activity reached all cells and spread via a multitude of pathways. Using this model, we were able to link, for the first time, recurrently connected cells in the LA with cells of the nAC phenotype. While we found a presynaptically expressed, protein synthesis independent decrease in inhibitory synaptic transmission in both nAC and accommodating (AC) cells, only nAC cells underwent a presynaptically induced and expressed, protein synthesis dependent potentiation. Moreover we observed an NMDA dependent hyperexcitability of the LA, with a preferential selection of nAC cells into burst generation. The transformation of a subset of AC cells into nAC cells accompanied this general increase in LA excitability. Given the considerable evidence suggesting a relationship between the central noradrenergic (NA) system and fear/anxiety states (Itoi, 2008), the effects of strong activation of the LA on the noradrenergic system were investigated, which revealed a loss of its modulatory actions on cell spiking patterns. Finally, we found changes in the expression levels of a number of genes; among which the one coding for $DNF, to be induced by strong activation of the LA. In view of the recently described link between nAC cells and expression of pCREB (phosphorylated cAMP-responsive element-binding protein) as well as the involvement of recurrently connected cells of the LA in fear-conditioned learning, our findings may provide a model of how potentiation of recurrent connections between nAC neurons underlies their recruitment into the fear memory trace. Additionally, they may offer clues as to the mechanisms through which a selected subset of neurons can be reactivated by smaller, previously ineffective external stimulations to respond with a sufficiently strong signal, which can be transmitted to downstream targets of the LA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 ± 1.63 and 12.75 ± 1.44 s) or frequencies of responses (8.75 ± 1.20 and 11.25 ± 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.