931 resultados para Parameter Rapresentation of Harmonic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general time dependent source problem has been solved by the method of transforms (Laplace, Lebedev–Kontorovich in succession) and the solution is obtained in the form of an infinite series involving Legendre functions. The solutions in the case of harmonic time dependence and the incident plane wave have been derived from the above solution and are presented in the form of an infinite series. In the case of an incident plane wave, the series has been summed and the final solution involves an improper integral which behaves like a complementary error function for large values of the argument. Finally, the far field evaluation has been shown. The results are compared with those of Sommerfeld's half-plane diffraction problem with unmixed boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the electronic structure of La1-xSrxMnO3+δ, x=0, 0.1, 0.2, 0.3, and 0.4, across the semiconductor-metal transition, using various electron spectroscopy techniques. The negligible intensity seen at EF using ultraviolet photoemission spectroscopy and bremsstrahlung isochromat spectroscopy (BIS) indicate an unusual semiconductor-metal transition observed for x≥0.2, consistent with the resistivity data. The BIS spectra show doped hole states developing about 1.4 eV above EF as a function of x. Auger electron spectroscopy gives an estimate of the intra-atomic Coulomb energy in the O 2p manifold to be about 6.8 eV. The Mn 2p core-level spectrum of LaMnO3, analyzed in terms of a configuration-interaction calculation, gives parameter values of the charge-transfer energy Δ=5.0 eV, the hybridization strength between Mn 3d and O 2p states, t=3.8 eV, and the on-site Coulomb energy in Mn 3d states Udd=4.0 eV, suggesting a mixed character for the ground state of LaMnO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among various MEMS sensors, a rate gyroscope is one of the most complex sensors from the design point of view. The gyro normally consists of a proof mass suspended by an elaborate assembly of beams that allow the system to vibrate in two transverse modes. The structure is normally analysed and designed using commercial FEM packages such as ANSYS or MEMS specific commercial tools such as Coventor or Intellisuite. In either case, the complexity in analysis rises manyfolds when one considers the etch hole topography and the associated fluid flow calculation for damping. In most cases, the FEM analysis becomes prohibitive and one resorts to equivalent electrical circuit simulations using tools like SABER in Coventor. Here, we present a simplified lumped parameter model of the tuning fork gyro and show how easily it can be implemented using a generic tool like SIMULINK. The results obtained are compared with those obtained from more elaborate and intense simulations in Coventor. The comparison shows that lumped parameter SIMULINK model gives equally good results with fractional effort in modelling and computation. Next, the performance of a symmetric and decoupled vibratory gyroscope structure is also evaluated using this approach and a few modifications are made in this design to enhance the sensitivity of the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative quantum yields, phi*, for the production of I*(P-2(1/2)) at 266, 280, and similar to 305 nm are reported for a series of primary alkyl iodides using the technique of two-photon laser-induced fluorescence for the detection of I(P-2(3/2)) and I*(P-2(1/2)) atoms. Results are analyzed by invoking the impulsive energy disposal model, which summarizes the dynamics of dissociation as a single parameter. Comparison of our data with those calculated by a more sophisticated time-dependent quantum mechanical model is also made. Near the red edge of the alkyl iodide A band, absorption contribution from the (3)Q(1) state is important and the dynamics near the (3)Q(0)-(1)Q(1) curve-crossing region seem to be influenced by the kinematics of the dissociation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general analysis of squeezing transformations for two-mode systems is given based on the four-dimensional real symplectic group Sp(4, R). Within the framework of the unitary (metaplectic) representation of this group, a distinction between compact photon-number-conserving and noncompact photon-number-nonconserving squeezing transformations is made. We exploit the U(2) invariant squeezing criterion to divide the set of all squeezing transformations into a two-parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two-mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2) is emphasized, and known experimental situations where all U(2) elements can be reproduced are briefly described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a sensorless vector control scheme for general-purpose induction motor drives using the current error space phasor-based hysteresis controller. In this paper, a new technique for sensorless operation is developed to estimate rotor voltage and hence rotor flux position using the stator current error during zero-voltage space vectors. It gives a comparable performance with the vector control drive using sensors especially at a very low speed of operation (less than 1 Hz). Since no voltage sensing is made, the dead-time effect and loss of accuracy in voltage sensing at low speed are avoided here, with the inherent advantages of the current error space phasor-based hysteresis controller. However, appropriate device on-state drops are compensated to achieve a steady-state operation up to less than 1 Hz. Moreover, using a parabolic boundary for current error, the switching frequency of the inverter can be maintained constant for the entire operating speed range. Simple sigma L-s estimation is proposed, and the parameter sensitivity of the control scheme to changes in stator resistance, R-s is also investigated in this paper. Extensive experimental results are shown at speeds less than 1 Hz to verify the proposed concept. The same control scheme is further extended from less than 1 Hz to rated 50 Hz six-step operation of the inverter. Here, the magnetic saturation is ignored in the control scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the breaking of a polymer molecule which is fixed at one end and is acted upon by a force at the other. The polymer is assumed to be a linear chain joined together by bonds which satisfy the Morse potential. The applied force is found to modify the Morse potential so that the minimum becomes metastable. Breaking is just the decay of this metastable bond, by causing it to go over the barrier. Increasing the force causes the potential to become more and more distorted and eventually leads to the disappearance of the barrier. The limiting force at which the barrier disappears is D(e)a/2,D-e with a the parameters characterizing the Morse potential. The rate of breaking is first calculated using multidimensional quantum transition state theory. We use the harmonic approximation to account for vibrations of all the units. It includes tunneling contributions to the rate, but is valid only above a certain critical temperature. It is possible to get an analytical expression for the rate of breaking. We have calculated the rate of breaking for a model, which mimics polyethylene. First we calculate the rate of breaking of a single bond, without worrying about the other bonds. Inclusion of other bonds under the harmonic approximation is found to lower this rate by at the most one order of magnitude. Quantum effects are found to increase the rate of breaking and are significant only at temperatures less than 150 K. At 300 K, the calculations predict a bond in polyethylene to have a lifetime of only seconds at a force which is only half the limiting force. Calculations were also done using the Lennard-Jones potential. The results for Lennard-Jones and Morse potentials were rather different, due to the different long-range behaviors of the two potentials. A calculation including friction was carried out, at the classical level, by assuming that each atom of the chain is coupled to its own collection of harmonic oscillators. Comparison of the results with the simulations of Oliveira and Taylor [J. Chem. Phys. 101, 10 118 (1994)] showed the rate to be two to three orders of magnitude higher. As a possible explanation of discrepancy, we consider the translational motion of the ends of the broken chains. Using a continuum approximation for the chain, we find that in the absence of friction, the rate of the process can be limited by the rate at which the two broken ends separate from one another and the lowering of the rate is at the most a factor of 2, for the parameters used in the simulation (for polyethylene). In the presence of friction, we find that the rate can be lowered by one to two orders of magnitude, making our results to be in reasonable agreement with the simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two efficient discrete parameter simulation optimization (DPSO) algorithms for the long-run average cost objective. One of these algorithms uses the smoothed functional approximation (SFA) procedure, while the other is based on simultaneous perturbation stochastic approximation (SPSA). The use of SFA for DPSO had not been proposed previously in the literature. Further, both algorithms adopt an interesting technique of random projections that we present here for the first time. We give a proof of convergence of our algorithms. Next, we present detailed numerical experiments on a problem of admission control with dependent service times. We consider two different settings involving parameter sets that have moderate and large sizes, respectively. On the first setting, we also show performance comparisons with the well-studied optimal computing budget allocation (OCBA) algorithm and also the equal allocation algorithm. Note to Practitioners-Even though SPSA and SFA have been devised in the literature for continuous optimization problems, our results indicate that they can be powerful techniques even when they are adapted to discrete optimization settings. OCBA is widely recognized as one of the most powerful methods for discrete optimization when the parameter sets are of small or moderate size. On a setting involving a parameter set of size 100, we observe that when the computing budget is small, both SPSA and OCBA show similar performance and are better in comparison to SFA, however, as the computing budget is increased, SPSA and SFA show better performance than OCBA. Both our algorithms also show good performance when the parameter set has a size of 10(8). SFA is seen to show the best overall performance. Unlike most other DPSO algorithms in the literature, an advantage with our algorithms is that they are easily implementable regardless of the size of the parameter sets and show good performance in both scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sonic boom at a large distance from its source consists of a leading shock, a trailing shock and a one parameter family of nonlinear wavefronts in between these shocks. A new ray theoretical method using a shock ray theory and a weakly nonlinear lay theory has been used to obtain the shock fronts and wavefronts respectively, for a maneuvering aerofoil in a homogeneous medium. This method introduces a one parameter family of Cauchy problems to calculate the shock and wave fronts emerging from the surface of the aerofoil. These problems are solved numerically to obtain the leading shock front and the nonlinear wavefronts emerging from the front portion of the aerofoil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium lanthanum bismuth niobate Ba1−(3/2)xLaxBi2Nb2O9 (x = 0, 0.05, 0.1, and 0.15) powders have been prepared via solid state reaction route. The monophasic layered perovskite nature of each composition of these was confirmed by x-ray diffraction studies. A continuous decrease in the lattice parameter c of parent BaBi2Nb2O9 with increase in La3+ doping level was noteworthy. A decrease in dielectric constant maximum (εm), a shift in dielectric anomaly to lower temperatures (from 488 to 382 K), and an increase in the diffuseness (γ) (from 1.58 to 1.84) of dielectric anomaly were encountered on increasing x from 0 to 0.15. Vogel-Fulcher analyses showed a decrease in freezing temperature (Tf) (from 157 to 40 K) and an increase in the activation energy (0.53 to 1.12 eV) for frequency dispersion with increase in La3+ content. A downward shift in the peak position of the pyroelectric coefficient with increasing La3+ doping level was observed. The observed changes in the above physical properties were attributed to the increase in A-site chemical heterogeneity as a result of aliovalent La3+ doping on Ba2+ sites and associated A-site vacancy formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the analytic extension property of the Schrodinger propagator for the Heisenberg sublaplacian and some related operators. The result for the sublaplacian is proved by interpreting the sublaplacian as a direct integral of an one parameter family of dilated special Hermite operators.