819 resultados para Pacific settlement of international disputes.
Resumo:
Many benthic marine invertebrates, like barnacles, have a planktonic larval stage whose primary purpose is dispersal. How these species colonize suitable substrata is fundamental to understanding their evolution, population biology, and wider community dynamics. Unlike larval dispersal, settlement occurs on a relatively small spatial scale and involves larval behavior in response to physical and chemical characteristics of the substratum. Biogenic chemical cues have been implicated in this process. Their identification, however, has proven challenging, no more so than for the chemical basis of barnacle gregariousness, which was first described >50 years ago. We now report that a biological cue to gregarious settlement, the settlement-inducing protein complex (SIPC), of the major fouling barnacle Balanus amphitrite is a previously undescribed glycoprotein. The SIPC shares a 30% sequence homology with the thioester-containing family of proteins that includes the alpha sub(2)-macroglobulins. The cDNA (5.2 kb) of the SIPC encodes a protein precursor comprising 1,547 aa with a 17-residue signal peptide region. A number of structural characteristics and the absence of a thioester bond in the SIPC suggest that this molecule is a previously undescribed protein that may have evolved by duplication from an ancestral alpha sub(2)-macroglobulin gene. Although the SIPC is regarded as an adult cue that is recognized by the cyprid at settlement, it is also expressed in the juvenile and in larvae, where it may function in larva-larva settlement interactions.
Resumo:
The type specimens of the common tropical intertidal barnacles Chthamalus malayensis and C. moro, were re-investigated and compared with other specimens of Chthamalus from the Indian Ocean, Indo-Malaya, northern Australia, Vietnam, China and the western Pacific, using ‘arthropodal’ as well as shell characters. Chthamalus malayensis occurs widely in Indo-Malayan and tropical Australian waters. It ranges westwards in the Indian Ocean to East Africa and northwards in the Pacific to Vietnam, China and the Ryukyu Islands. Chthamalus malayensis has the arthropodal characters attributed to it by Pope (1965); conical spines on cirrus 1 and serrate setae with basal guards on cirrus 2. Chthamalus moro is currently fully validated only for the Philippines, Indonesia, Taiwan, the Xisha (Paracel) Islands, the Ryukyu Islands, the Mariana Islands, the Caroline Islands, Fiji and Samoa. It is a small species of the ‘challengeri’ subgroup, lacking conical spines on cirrus 1 and bearing pectinate setae without basal guards on cirrus 2. It may be a ‘relict’ insular species. Chthamalus challengeri also lacks conical spines on cirrus 1 and has pectinate setae without basal guards on cirrus 2. Records of C. challengeri south of Japan are probably erroneous. However, there is an undescribed species of the ‘challengeri’ subgroup in the Indian Ocean, Indo-Malaya, Vietnam and southern China and yet more may occur in the western Pacific. The subgroups ‘malayensis’ and ‘challengeri’ require genetic investigation. Some comments are included on the arthropodal characters and geographical distributions of Chthamalus antennatus, C. dalli and C. stellatus
Resumo:
The assumptions underlying the interpretation of the early medieval settlement of woodland are challenged through a detailed study of the Weald in western Sussex. The patterns of usage of woodland in England were very varied, and each area needs to be looked at individually. Systems of woodland exploitation did not simply develop from extensive to intensive, but may have taken a number of different forms during the early medieval period. In one area of the Weald, near to Horsham, the woodland appears to have been systematically divided up between different estates. This implies that woodland settlement may not always have developed organically, but this type of landscape could have been planned. It is argued that the historical complexity of woodland landscapes has not been recognised because the evidence has been aggregated. Instead, each strand of evidence needs to be evaluated separately.