974 resultados para Pacific Coast (North America)
Resumo:
Land-atmosphere coupling and its impact on extreme precipitation and temperature events over North America are studied using the fifth generation of the Canadian Regional Climate Model (CRCM5). To this effect, two 30 year long simulations, spanning the 1981–2010 period, with and without land-atmosphere coupling, have been performed with CRCM5, driven by the European Centre for Medium-Range Weather Forecasts reanalysis at the boundaries. In the coupled simulation, the soil moisture interacts freely with the atmosphere at each time step, while in the uncoupled simulation, soil moisture is replaced with its climatological value computed from the coupled simulation, thus suppressing the soil moisture-atmosphere interactions. Analyses of the coupled and uncoupled simulations, for the summer period, show strong soil moisture-temperature coupling over the Great Plains, consistent with previous studies. The maxima of soil moisture-precipitation coupling is more spread out and covers the semiarid regions of the western U.S. and parts of the Great Plains. However, the strength of soil moisture-precipitation coupling is found to be generally weaker than that of soil moisture-temperature coupling. The study clearly indicates that land-atmosphere coupling increases the interannual variability of the seasonal mean daily maximum temperature in the Great Plains. Land-atmosphere coupling is found to significantly modulate selected temperature extremes such as the number of hot days, frequency, and maximum duration of hot spells over the Great Plains. Results also suggest additional hot spots, where soil moisture modulates extreme events. These hot spots are located in the southeast U.S. for the hot days/hot spells and in the semiarid regions of the western U.S. for extreme wet spells. This study thus demonstrates that climatologically wet/dry regions can become hot spots of land-atmosphere coupling when the soil moisture decreases/increases to an intermediate transitional level where evapotranspiration becomes moisture sensitive and large enough to affect the climate.
Resumo:
The advocacy coalition framework (ACF) is one of the most frequently applied theories of the policy process. Most applications have been in Western Europe and North America. This article provides an overview of the ACF, summarizes existing applications outside of Western Europe and North America, and introduces the special issue that features applications of the ACF in the Philippines, China, India, and Kenya. This article concludes with an argument for the continued application of the ACF outside of Western Europe and North America and a research agenda for overcoming challenges in using the ACF in comparative public policy research.
Resumo:
BACKGROUND High early mortality in patients with HIV-1 starting antiretroviral therapy (ART) in sub-Saharan Africa, compared to Europe and North America, is well documented. Longer-term comparisons between settings have been limited by poor ascertainment of mortality in high burden African settings. This study aimed to compare mortality up to four years on ART between South Africa, Europe, and North America. METHODS AND FINDINGS Data from four South African cohorts in which patients lost to follow-up (LTF) could be linked to the national population register to determine vital status were combined with data from Europe and North America. Cumulative mortality, crude and adjusted (for characteristics at ART initiation) mortality rate ratios (relative to South Africa), and predicted mortality rates were described by region at 0-3, 3-6, 6-12, 12-24, and 24-48 months on ART for the period 2001-2010. Of the adults included (30,467 [South Africa], 29,727 [Europe], and 7,160 [North America]), 20,306 (67%), 9,961 (34%), and 824 (12%) were women. Patients began treatment with markedly more advanced disease in South Africa (median CD4 count 102, 213, and 172 cells/µl in South Africa, Europe, and North America, respectively). High early mortality after starting ART in South Africa occurred mainly in patients starting ART with CD4 count <50 cells/µl. Cumulative mortality at 4 years was 16.6%, 4.7%, and 15.3% in South Africa, Europe, and North America, respectively. Mortality was initially much lower in Europe and North America than South Africa, but the differences were reduced or reversed (North America) at longer durations on ART (adjusted rate ratios 0.46, 95% CI 0.37-0.58, and 1.62, 95% CI 1.27-2.05 between 24 and 48 months on ART comparing Europe and North America to South Africa). While bias due to under-ascertainment of mortality was minimised through death registry linkage, residual bias could still be present due to differing approaches to and frequency of linkage. CONCLUSIONS After accounting for under-ascertainment of mortality, with increasing duration on ART, the mortality rate on HIV treatment in South Africa declines to levels comparable to or below those described in participating North American cohorts, while substantially narrowing the differential with the European cohorts. Please see later in the article for the Editors' Summary.
Resumo:
BACKGROUND Even among HIV-infected patients who fully suppress plasma HIV RNA replication on antiretroviral therapy, genetic (e.g. CCL3L1 copy number), viral (e.g. tropism) and environmental (e.g. chronic exposure to microbial antigens) factors influence CD4 recovery. These factors differ markedly around the world and therefore the expected CD4 recovery during HIV RNA suppression may differ globally. METHODS We evaluated HIV-infected adults from North America, West Africa, East Africa, Southern Africa and Asia starting non-nucleoside reverse transcriptase inhibitorbased regimens containing efavirenz or nevirapine, who achieved at least one HIV RNA level <500/ml in the first year of therapy and observed CD4 changes during HIV RNA suppression. We used a piecewise linear regression to estimate the influence of region of residence on CD4 recovery, adjusting for socio-demographic and clinical characteristics. We observed 28 217 patients from 105 cohorts over 37 825 person-years. RESULTS After adjustment, patients from East Africa showed diminished CD4 recovery as compared with other regions. Three years after antiretroviral therapy initiation, the mean CD4 count for a prototypical patient with a pre-therapy CD4 count of 150/ml was 529/ml [95% confidence interval (CI): 517–541] in North America, 494/ml (95% CI: 429–559) in West Africa, 515/ml (95% CI: 508–522) in Southern Africa, 503/ml (95% CI: 478–528) in Asia and 437/ml (95% CI: 425–449) in East Africa. CONCLUSIONS CD4 recovery during HIV RNA suppression is diminished in East Africa as compared with other regions of the world, and observed differences are large enough to potentially influence clinical outcomes. Epidemiological analyses on a global scale can identify macroscopic effects unobservable at the clinical, national or individual regional level.
Resumo:
Lake sediments from arcto-boreal regions commonly contain abundant Betula pollen. However, palaeoenvironmental interpretations of Betula pollen are often ambiguous because of the lack of reliable morphological features to distinguish among ecologically distinct Betula species in western North America. We measured the grain diameters and pore depths of pollen from three tree-birch species (B. papyrifera, B. kenaica and B. neoalaskana) and two shrub-birch species (B. glandulosa and B. nana), and calculated the ratio of grain diameter to pore depth (D/P ratio). No statistical difference exists in all three parameters between the shrub-birch species or between two of the tree-birch species (B. kenaica and B. papyrifera), and B. neoalaskana is intermediate between the shrub-birch and the other two tree-birch species. However, mean pore depth is significantly larger for the tree species than for the shrub species. In contrast, mean grain diameter cannot distinguish tree and shrub species. Mean D/P ratio separates tree and shrub species less clearly than pore depth, but this ratio can be used for verification. The threshold for distinguishing pollen of tree versus shrub birch lies at 2.55 μm and 8.30 for pore depth and D/P ratio, respectively. We'applied these thresholds to the analysis of Betula pollen in an Alaskan lake-sediment core spanning the past 800 years. Results show that shrub birch increased markedly at the expense of tree birch during the‘Little Ice Age’; this patten is not discernible in the profile of total birch pollen.
Resumo:
Chironomid-temperature inference models based on North American, European and combined surface sediment training sets were compared to assess the overall reliability of their predictions. Between 67 and 76 of the major chironomid taxa in each data set showed a unimodal response to July temperature, whereas between 5 and 22 of the common taxa showed a sigmoidal response. July temperature optima were highly correlated among the training sets, but the correlations for other taxon parameters such as tolerances and weighted averaging partial least squares (WA-PLS) and partial least squares (PLS) regression coefficients were much weaker. PLS, weighted averaging, WA-PLS, and the Modern Analogue Technique, all provided useful and reliable temperature inferences. Although jack-knifed error statistics suggested that two-component WA-PLS models had the highest predictive power, intercontinental tests suggested that other inference models performed better. The various models were able to provide good July temperature inferences, even where neither good nor close modern analogues for the fossil chironomid assemblages existed. When the models were applied to fossil Lateglacial assemblages from North America and Europe, the inferred rates and magnitude of July temperature changes varied among models. All models, however, revealed similar patterns of Lateglacial temperature change. Depending on the model used, the inferred Younger Dryas July temperature decrease ranged between 2.5 and 6°C.
Resumo:
List of Physicians and Surgeons arranged by location, giving post office address with population and location, the School practiced, date and college of graduation, all the existing and extinct medical colleges in North America, with locations, officers, number of professors, lecturers, demonstrators, etc., the various medical societies, penal, reformatory and charitable state institutions, hospitals, sanitariums, dispensaries, asylums and other medical institutions, boards of health, boards of medical examiners, health officers at principal points, the laws of registration and other laws relating to the profession, medical journals with names of editors, frequency of publication and subscription rates, medical libraries, a therapeutic classification of American health resorts, mineral springs, official list of officers of the medical departments of the U.S. Army, Navy and Marine Hospital Service, the U.S. Indian Service, roster of examining surgeons of the U.S. Pension Department, a descriptive sketch of each state, territory and province, embodying such matters as location, boundary, extent in miles and acres, latitude and longitude, statistics relating to climate, temperature, rate of mortality, etc. Full particulars of all national and inter-state associations and societies relating to medicine and surgery, and an INDEX TO THE PHYSICIANS OF THE UNITED STATES. Arranged alphabetically, with the number of the page and column in which the name appears.
Resumo:
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
Resumo:
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) - despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.