791 resultados para POLYUNSATURATED FATTY-ACIDS
Resumo:
A gene, named AtECH2, has been identified in Arabidopsis thaliana to encode a monofunctional peroxisomal enoyl-CoA hydratase 2. Homologues of AtECH2 are present in several angiosperms belonging to the Monocotyledon and Dicotyledon classes, as well as in a gymnosperm. In vitro enzyme assays demonstrated that AtECH2 catalyzed the reversible conversion of 2E-enoyl-CoA to 3R-hydroxyacyl-CoA. AtECH2 was also demonstrated to have enoyl-CoA hydratase 2 activity in an in vivo assay relying on the synthesis of polyhydroxyalkanoate from the polymerization of 3R-hydroxyacyl-CoA in the peroxisomes of Saccharomyces cerevisiae. AtECH2 contained a peroxisome targeting signal at the C-terminal end, was addressed to the peroxisome in S. cerevisiae, and a fusion protein between AtECH2 and a fluorescent protein was targeted to peroxisomes in onion cells. AtECH2 gene expression was strongest in tissues with high beta-oxidation activity, such as germinating seedlings and senescing leaves. The contribution of AtECH2 to the degradation of unsaturated fatty acids was assessed by analyzing the carbon flux through the beta-oxidation cycle in plants that synthesize peroxisomal polyhydroxyalkanoate and that were over- or underexpressing the AtECH2 gene. These studies revealed that AtECH2 participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2E-enoyl-CoA for further degradation through the core beta-oxidation cycle.
Resumo:
Use of n-3 fatty acids (FA) has been reported to be beneficial for cancer patients. We performed a systematic review of the literature in order to issue recommendations on the clinical use of n-3 FA in the cancer setting. A systematic search was performed in MEDLINE, EMBASE, Cochrane and Healthstar databases. We selected clinical trials or prospective observational studies including patients with cancer and life expectancy >2 months, in which enteral supplements with n-3 FA were administered. Parameters evaluated individually were clinical (nutritional status, tolerance, survival and hospital stays), biochemical (inflammatory mediators), and functional (functional status, appetite and quality of life (QoL)). Seventeen studies met the inclusion criteria; eight were of high quality. The panel of experts established the following evidence: (1) oral supplements with n-3 FA benefit patients with advanced cancer and weight loss, and are indicated in tumours of the upper digestive tract and pancreas; (2) the advantages observed were: increased weight and appetite, improved QoL, and reduced post-surgical morbidity; (3) there is no defined pattern for combining different n-3 FA, and it is recommended to administer > 1.5 g/day; and (4) better tolerance is obtained administering low-fat formulas for a period of at least 8 weeks. All the evidences were grade B but for 'length of treatment' and 'advantage of survival' it was grade C. Our findings suggest that administration of n-3 FA (EPA and DHA) in doses of at least 1.5 g/day for a prolonged period of time to patients with advanced cancer is associated with an improvement in clinical, biological and QoL parameters.
Resumo:
BACKGROUND Mixed hyperlipidemia is common in patients with diabetes. Statins, the choice drugs, are effective at reducing lipoproteins that contain apolipoprotein B100, but they fail to exert good control over intestinal lipoproteins, which have an atherogenic potential. We describe the effect of prescription omega 3 fatty acids on the intestinal lipoproteins in patients with type 2 diabetes who were already receiving fluvastatin 80 mg per day. METHODS Patients with type 2 diabetes and mixed hyperlipidemia were recruited. Fasting lipid profile was taken when patients were treated with diet, diet plus 80 mg of fluvastatin and diet plus fluvastatin 80 mg and 4 g of prescription omega 3 fatty acids. The intestinal lipoproteins were quantified by the fasting concentration of apolipoprotein B48 using a commercial ELISA. RESULTS The addition of 4 g of prescription omega 3 was followed by significant reductions in the levels of triglycerides, VLDL triglycerides and the triglyceride/HDL cholesterol ratio, and an increase in HDL cholesterol (P < 0.05). Fluvastatin induced a reduction of 26% in B100 (P < 0.05) and 14% in B48 (NS). However, the addition of omega 3 fatty acids enhanced this reduction to 32% in B100 (NS) and up to 36% in B48 (P < 0.05). CONCLUSION Our preliminary findings therefore suggest an additional benefit on postprandial atherogenic particles when omega 3 fatty acids are added to standard treatment with fluvastatin.
Resumo:
To provide further insights into ruminant lipid digestion and metabolism, and into cis9, trans-11 18:2 synthesis, 12 growing Engadine lambs grazing either mountain pasture (2,250 m above sea level; n = 6) or lowland pasture (400 m above sea level; n = 6) were studied. Both pastures consisted exclusively of C-3 plants. Before the experiment, all animals grazed a common pasture for 6 wk. Grasses and perirenal adipose tissues of the sheep were analyzed for fatty acids by gas chromatography. Stable C-isotope ratios (delta C-13 values in % vs. the Vienna Pee Dee Belemnite standard) were determined in the composite samples by elemental analysis-isotope ratio mass spectrometry. The delta C-13 of the individual fatty acids were measured by gas chromatography-combustion-isotope ratio mass spectrometry. The delta C-13 value of the entire mountain pasture grass was -27.5% (SD 0.31), whereas that of the lowland pasture grass was -30.0% (SD 0.07). This difference was reflected in the perirenal adipose tissues of the corresponding sheep (P < 0.05), even though the delta C-13 values were less in the animals than in the grass. The delta C-13 values for cis-9 16:1 and cis-9 18:1 in perirenal fat differed between mountain and lowland lambs (P < 0.05). The 16:0 in the adipose tissue was enriched in C-13 by 5% compared with the dietary 16:0, likely as a result of partly endogenous synthesis. The d13C values of cis-9, trans-11 18:2 (cis-9, trans-11 CLA) in the adipose tissue were smaller than those of its dietary precursors, cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3; conversely, the delta C-13 values of trans-11 18:1 were not, suggesting that large proportions of perirenal cis-9, trans-11 18:2 were of endogenous origin and discrimination against C-13 occurred during Delta(9)-desaturation. The same discrimination was indicated by the isotopic shift between 16:0 and cis-9 16:1 in the mountain grazing group. Furthermore, the delta C-13 values of cis-9, trans-11 18:2 were smaller relative to the precursor fatty acids in the mountain lambs compared with the lowland group. This result suggests a reduced extent of biohydrogenation in lambs grazing on mountain grass in comparison with those grazing on lowland grass. This was supported by the smaller cis-9, trans-11 18:2 concentrations in total fatty acids found in the adipose tissues of the lowland lambs (P < 0.001). The results of this study demonstrate that natural differences between delta C-13 values of swards from different pastures and the adipose tissue fatty acids could be used as tracers in studies of lipid metabolism in ruminants.
Resumo:
BACKGROUND Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region. RESULTS In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids. CONCLUSIONS These data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids.
Resumo:
Abstract A prospective 1-year follow-up study in ear, nose, and throat (ENT) cancer patients was carried out one year after radiotherapy to assess the effect of varying consumption of ω3 fatty acid according to whether they consumed more or less than the 50th percentile of ω3 fatty acids. Clinical, analytical, inflammatory (CRP and IL-6), and oxidative variables (TAC, GPx, GST, and SOD) were evaluated. The study comprised 31 patients (87.1% men), with a mean age of 61.3 ± 9.1 years. Hematological variables showed significant differences in the patients with a lower consumption of ω3 fatty acids. A lower mortality and longer survival were found in the group with ω3 fatty acid consumption ≥50th percentile but the differences were not significant. No significant difference was reached in toxicity, inflammation, and oxidative stress markers. The group with ω3 fatty acid consumption <50th percentile significantly experienced more hematological and immune changes.
Resumo:
Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.
Resumo:
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.
Resumo:
Fatty acids are the basis of so-called stearates which are frequently used as lubricants in the production of ecstasy tablets. Being a product added at the initial tablet production step its composition does not change once the compression is performed. The analysis of fatty acids can therefore provide useful information for a drug intelligence purpose. In this context an appropriate analytical method was developed to improve results already obtained by routine analyses. Considering the small quantity of such fatty acids in ecstasy tablets (not, vert, similar3%) the research focussed on their extraction and concentration. Two different procedures were tested: (1) liquid/liquid extraction using dichloromethane followed by derivatisation and (2) in situ transesterification using bortrifluoride. Analyses were performed by GC-MS. The two procedures were optimized and applied to eight ecstasy seizures, in order to choose one of the procedures for its application to a large ecstasy sample set. They were compared by considering the number of peaks detected and sample amount needed, reproducibility and other technical aspects.
Resumo:
The reaction of fluorinated fatty acids, perfluorobutyric acid (C3F7CO2H), and perfluorododecanoic acid (C11F23CO2H), with dodecacarbonyltriruthenium (Ru-3(CO)(12)) under reflux in tetrahydrofuran, followed by addition of two-electron donors (L) such as pyridine, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, or triphenylphosphine, gives stable diruthenium complexes Ru-2(CO)(4)((2)-(2)-O2CC3F7)(2)(L)(2) (1a, L=C5H5N; 1b, L=PTA; 1c, L=PPh3) and Ru-2(CO)(4)((2)-(2)-O2CC11F23)(2)(L)(2) (2a, L=C5H5N; 2b, L=PTA; 2c, L=PPh3). The catalytic activity of the complexes for hydrogenation of styrene under supercritical carbon dioxide has been assessed and compared to the analogous triphenylphosphine complexes with non-fluorinated carboxylato groups Ru-2(CO)(4)((2)-(2)-O2CC3H7)(2)(PPh3)(2) (3) and Ru-2(CO)(4)((2)-(2)-O2CC11H23)(2)(PPh3)(2) (4). In addition, the cytotoxicities of the fluorinated complexes 1 were also evaluated on several human cancer cell lines (A2780, A549, Me300, HeLa). The complexes appear to be moderately cytotoxic, showing greater activity on the Me300 melanoma cells. Single-crystal X-ray structure analyses of 1a and 3 show the typical sawhorse-type arrangement of the diruthenium tetracarbonyl backbone with two bridging carboxylates and two terminal ligands occupying the axial positions.
Resumo:
The fatty acids of olive oils of distinct quality grade from the most important European Union (EU) producer countries were chemically and isotopically characterized. The analytical approach utilized combined capillary column gas chromatography-mass spectrometry (GC/MS) and the novel technique of compound-specific isotope analysis (CSIA) through gas chromatography coupled to a stable isotope ratio mass spectrometer (IRMS) via a combustion (C) interface (GC/C/IRMS). This approach provides further insights into the control of the purity and geographical origin of oils sold as cold-pressed extra virgin olive oil with certified origin appellation. The results indicate that substantial enrichment in heavy carbon isotope (C-13) of the bulk oil and of individual fatty acids are related to (1) a thermally induced degradation due to deodorization or steam washing of the olive oils and (2) the potential blend with refined olive oil or other vegetable oils. The interpretation of the data is based on principal component analysis of the fatty acids concentrations and isotopic data (delta(13)C(oil), delta(13)C(16:0), delta(13)C(18:1)) and on the delta(13)C(16:0) vs delta(13)C(18:1) covariations. The differences in the delta(13)C values of palmitic and oleic acids are discussed in terms of biosynthesis of these acids in the plant tissue and admixture of distinct oils.
Resumo:
GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.
Resumo:
BACKGROUND: The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown. METHODS: In this double-blind study with a 2-by-2 factorial design, we randomly assigned 12,536 patients who were at high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes to receive a 1-g capsule containing at least 900 mg (90% or more) of ethyl esters of n-3 fatty acids or placebo daily and to receive either insulin glargine or standard care. The primary outcome was death from cardiovascular causes. The results of the comparison between n-3 fatty acids and placebo are reported here. RESULTS: During a median follow up of 6.2 years, the incidence of the primary outcome was not significantly decreased among patients receiving n-3 fatty acids, as compared with those receiving placebo (574 patients [9.1%] vs. 581 patients [9.3%]; hazard ratio, 0.98; 95% confidence interval [CI], 0.87 to 1.10; P=0.72). The use of n-3 fatty acids also had no significant effect on the rates of major vascular events (1034 patients [16.5%] vs. 1017 patients [16.3%]; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; P=0.81), death from any cause (951 [15.1%] vs. 964 [15.4%]; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; P=0.63), or death from arrhythmia (288 [4.6%] vs. 259 [4.1%]; hazard ratio, 1.10; 95% CI, 0.93 to 1.30; P=0.26). Triglyceride levels were reduced by 14.5 mg per deciliter (0.16 mmol per liter) more among patients receiving n-3 fatty acids than among those receiving placebo (P<0.001), without a significant effect on other lipids. Adverse effects were similar in the two groups. CONCLUSIONS: Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in patients at high risk for cardiovascular events. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors controlling the expression of genes involved in lipid homeostasis. PPARs activate gene transcription in response to a variety of compounds including hypolipidemic drugs as well as natural fatty acids. From the plethora of PPAR activators, Scatchard analysis of receptor-ligand interactions has thus far identified only four ligands. These are the chemotactic agent leukotriene B4 and the hypolipidemic drug Wy 14,643 for the alpha-subtype and a prostaglandin J2 metabolite and synthetic antidiabetic thiazolidinediones for the gamma-subtype. Based on the hypothesis that ligand binding to PPAR would induce interactions of the receptor with transcriptional coactivators, we have developed a novel ligand sensor assay, termed coactivator-dependent receptor ligand assay (CARLA). With CARLA we have screened several natural and synthetic candidate ligands and have identified naturally occurring fatty acids and metabolites as well as hypolipidemic drugs as bona fide ligands of the three PPAR subtypes from Xenopus laevis. Our results suggest that PPARs, by their ability to interact with a number of structurally diverse compounds, have acquired unique ligand-binding properties among the superfamily of nuclear receptors that are compatible with their biological activity.