904 resultados para POLYMER INTERACTION PARAMETERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rail steel bridges are vulnerable to high impact forces due to the passage of trains; unfortunately the determination of these transient impact forces is not straightforward as these are affected by a large number of parameters, including the wagon design, the wheel-rail contact and the design parameters of the bridge deck and track, as well as the operational parameters – wheel load and speed. To determine these impact forces, a detailed rail train-track/bridge dynamic interaction model has been developed, which includes a comprehensive train model using multi-body dynamics approach and a flexible track/bridge model using Euler– Bernoulli beam theory. Single and multi-span bridges have been modelled to examine their dynamic characteristics. From the single span bridge, the train critical speed is determined; the minimum distance of two peak loadings is found to affect the train critical speed. The impact factor and the dynamic characteristics are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the current study was to estimate heritabilities and correlations for body traits at different ages (Weeks 10 and 18 after stocking) in a giant freshwater prawn (Macrobrachium rosenbergii) population selected for fast growth rate in Vietnam. The dataset consisted of 4650 body records (2432 and 2218 records collected at Weeks 10 and 18, respectively) in the full pedigree comprising a total of 18 387 records. Variance and covariance components were estimated using restricted maximum likelihood fitting a multi-trait animal model. Estimates of heritability for body traits (bodyweight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) were moderate and ranged from 0.06 to 0.11 and from 0.11 to 0.22 at Weeks 10 and 18, respectively. Body-trait heritabilities estimated at Week 10 were not significantly lower than at Week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Our results suggested that selection for high growth rate in GFP can be undertaken successfully before full market size has been reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart Material Interface (SMI) is the latest generation of user interface that makes use of engineered materials and leverages their special properties. SMIs are capable of changing their physical properties such as shape, size and color, and can be controlled under certain (external) conditions. We provide an example of such an SMI in the form of a prototype of a vacuum cleaner. The prototype uses schematic electrochromic polymer at the suction nozzle of the vacuum cleaner, which changes its color depending on the dust level on a floor. We emphasize on the new affordances and communication language supported by SMIs, which challenges the current metaphors of user interfaces in the field of HCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric nanocomposites have been shown to possess superior electrical insulation properties compared to traditional filled-resins. However, poor dispersion uniformity and insufficient filler-matrix interaction can adversely affect insulation properties of nanocomposites. In this study, the use of plasma polymerization is proposed to coat poly(ethylene oxide) polymer layers on silica nanoparticles. It is shown that better dispersion is achieved and C-O bonds are created between the surface functional groups of the nanoparticles and the host epoxy polymer. Electrical insulation tests demonstrate that the nanocomposites with plasma polymerized silica nanoparticles feature better resistance against electrical treeing, lower dielectric constant, and also mitigated space charge built-up. Therefore, plasma polymerization offers a promising fabrication technique to further improve the synthesis of nanocomposite dielectrics with superior electrical insulation properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility to discriminate between the relative importance of the fluxes of energy and matter in plasma-surface interaction is demonstrated by the energy flux measurements in low-temperature plasmas ignited by the radio frequency discharge (power and pressure ranges 50-250 W and 8-11.5 Pa) in Ar, Ar+ H2, and Ar+ H2 + CH4 gas mixtures typically used in nanoscale synthesis and processing of silicon- and carbon-based nanostructures. It is shown that by varying the gas composition and pressure, the discharge power, and the surface bias one can effectively control the surface temperature and the matter supply rates. The experimental findings are explained in terms of the plasma-specific reactions in the plasma bulk and on the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.