967 resultados para POLY(VINYL METHYL-ETHER) BLEND


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology of self-assembled poly(vinyl alcohol)/silica (PVA/SiO2) nanocomposites is investigated with atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the SiO2 nanoparticles are homogenously distributed throughout the PVA matrix in a form of spherical nano-cluster. The average size of the SiO2 clusters is below 50 nm at the low contents (SiO2 ≤ 5 wt%), while particle aggregations are clearly observed and their average size markedly increases to 110 nm when 10 wt% SiO2 is loaded. The thermogravimetric analysis (TGA) shows that the nanocomposite significantly outperforms the pure PVA in the thermal resistance. By using a multi-heating-rate method, the thermal degradation kinetics of the nanocomposite with a SiO2 content of 5 wt% is compared to the PVA host. The reaction activation energy (E) of the nanocomposite, similar to the pure PVA, is divided into two main stages corresponding to two degradation steps. However, at a given degradation temperature, the nanocomposite presents much lower reaction velocity constants (k), while its E is 20 kJ/mol higher than that of the PVA host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent-free polymer electrolytes based on poly(vinyl alcohol) (PVA) and LiCF3SO3 have shown relatively high conductivities (10−8-10−4 S cm−1), with Arrhenius temperature dependence below the differential scanning calorimeter (DSC) glass transition temperature (343 K). This behaviour is in stark contrast to traditional polymer electrolytes in which the conductivity reflects VTF behaviour. 7Li nuclear magnetic resonance (NMR) spectroscopy has been employed to develop a better understanding of the conduction mechanism. Variable temperature NMR has indicated that, unlike traditional polymer electrolytes where the linewidth reaches a rigid lattice limit near Tg, the lithium linewidths show an exponential decrease with increasing temperature between 260 and 360 K. The rigid lattice limit appears to be below 260 K. Consequently, the mechanism for ion conduction appears to be decoupled from the main segmental motions of the PVA. Possible mechanisms include ion hopping, proton conduction or ionic motion assisted by secondary polymer relaxations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper/poly(vinyl alcohol) (PVA) nanocables have been successfully obtained by electrospinning a PVA-protected copper nanoparticle solution. The molar ratio of copper ions to PVA (in terms of VA repeating units) plays an important role in the formation of copper/PVA nanocables. The average diameter of the copper cores and PVA shells is about 100 and 400 nm, respectively. The structures of the copper/PVA nanocables are characterized by transmission electron microscopy (TEM) and their formation is confirmed by scanning electron microscopy (SEM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phase change material (PCM) from a mixture of plant oils was incorporated into electrospun poly(vinyl alcohol) (PVA) nanofibers using an emulsion electrospinning technique. Effects of PCM and PVA content in the emulsions on nanofiber morphology, heat properties, and phase change stability were examined. Higher PCM loadings in the nanofibers led to increased fiber diameter, gouged fiber surfaces, and higher heat enthalpies. The fibers maintained their morphological integrity even if the PCM melted. They showed reliable heat-regulating performance which can undergo at least 100 cycles of phase change. Such PCM fibers may be used for the development of thermoregulating fabrics or in passive heat storage devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica wet gels were prepared from acid sonohydrolysis of tetraethoxysilane (TEOS) and additions of poly(vinyl alcohol) (PVA)-water solution. Aerogels were obtained from supercritical CO(2) extraction. The samples were studied by thermal gravimetric (TG) analysis, small-angle X-ray scattering (SAXS), and nitrogen adsorption. The structure of wet gels can be described as a mass fractal with dimension D equal to 2.0 on the whole length scale experimentally probed by SAXS, from similar to 0.3 to similar to 15 nm. Pure and low-PVA-addition wet gels exhibit an upper cutoff accounting for a finite characteristic length xi of the mass fractal structure. Additions , of PVA increase without modifying D, which was attributed to a steric effect of the polymer in the structure. The pore volume fraction of the aerogels diminishes typically about 11% with respect to that of the wet gels, although nitrogen adsorption could be underestimating some porosity. The pore size distribution of the aerogels is shifted toward the mesopore region with the additions of PVA, in a straight relationship with the increase of xi in the wet gels. The thermal stability of the pore size distribution of the aerogels was studied up to 1000 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several new quercetagetin 7-methyl ether glycosides were characterized from the ethanolic extracts of scapes and leaves of Paepalanthus vellozioides and P. latipes. Their structures were determined mainly by 600 MHz NMR spectroscopy. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show room temperature charge-density wave (CDW) characteristics in d.c. and a.c. electric data in pressed pellets of lightly doped poly(3-methylthiophene). The possibility of a Peierls glass is discussed and metastables states are observed. D.C. and A.C. data also show a state with negative differencial resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of thermogravimetric analysis (TGA) tests in PVC (1.0; 2.0 mm) and HDPE (0.8; 2.5 mm) geomembranes exposed to weathering and leachate after 30 months. The aim of this paper is the comparison of fresh and exposed samples to assess the degradation process concerning the total loss of mass of geomembranes. The exposure was conducted in accordance with the recommendations of ASTM standards. The TGA tests were carried out according to ASTM D6370 and E2105. Results show, for instance, that for PVC geomembrane the largest reductions of plasticizers occurred for samples exposed to weathering. The loss of plasticizers after the exposure contributed to the decrease of deformation and consequent increase in stiffness. TGA tests shows to be a valuable tool to control the quality of the materials. © 2012 ejge.